Growth of Inclined GaAs Nanowires by Molecular Beam Epitaxy: Theory and Experiment

被引:24
|
作者
Zhang, X. [2 ,3 ]
Dubrovskii, V. G. [1 ,3 ]
Sibirev, N. V. [3 ]
Cirlin, G. E. [1 ,3 ,4 ]
Sartel, C. [4 ]
Tchernycheva, M. [5 ]
Harmand, J. C. [4 ]
Glas, F. [4 ]
机构
[1] Ioffe Phys Tech Inst RAS, St Petersburg 194021, Russia
[2] Beijing Univ Posts & Telecommun, Key Lab Informat Photon & Opt Commun, Minist Educ, Beijing 100876, Peoples R China
[3] St Petersburg Acad Univ RAS, St Petersburg 194021, Russia
[4] CNRS LPN, F-91460 Marcoussis, France
[5] CNRS, Dept OptoGaN, Inst Elect Fondamentale, UMR 8622, F-91405 Orsay, France
来源
NANOSCALE RESEARCH LETTERS | 2010年 / 5卷 / 10期
基金
俄罗斯基础研究基金会;
关键词
Inclined GaAs nanowires; Molecular beam epitaxy; Surface diffusion; STACKING-FAULTS; SEMICONDUCTOR; HETEROSTRUCTURES; DIFFUSION; MODEL;
D O I
10.1007/s11671-010-9698-7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The growth of inclined GaAs nanowires (NWs) during molecular beam epitaxy (MBE) on the rotating substrates is studied. The growth model provides explicitly the NW length as a function of radius, supersaturations, diffusion lengths and the tilt angle. Growth experiments are carried out on the GaAs(211)A and GaAs(111)B substrates. It is found that 20A degrees inclined NWs are two times longer in average, which is explained by a larger impingement rate on their sidewalls. We find that the effective diffusion length at 550A degrees C amounts to 12 nm for the surface adatoms and is more than 5,000 nm for the sidewall adatoms. Supersaturations of surface and sidewall adatoms are also estimated. The obtained results show the importance of sidewall adatoms in the MBE growth of NWs, neglected in a number of earlier studies.
引用
收藏
页码:1692 / 1697
页数:6
相关论文
共 50 条
  • [31] GROWTH OF GAAS ON SIOX BY MOLECULAR-BEAM EPITAXY
    CHIN, A
    BHATTACHARYA, PK
    KOTHIYAL, GP
    JOURNAL OF APPLIED PHYSICS, 1987, 62 (04) : 1416 - 1419
  • [32] SPIRAL GROWTH OF GAAS BY MOLECULAR-BEAM EPITAXY
    HSU, CC
    XU, JB
    WILSON, IH
    ANDERSSON, TG
    THORDSON, JV
    APPLIED PHYSICS LETTERS, 1994, 65 (12) : 1552 - 1554
  • [33] SELECTIVE GROWTH OF GAAS BY MOLECULAR-BEAM EPITAXY
    HIYAMIZU, S
    FUJII, T
    NANBU, K
    SAKURAI, T
    HASHIMOTO, H
    RYUZAN, O
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (03) : C121 - C122
  • [34] Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy
    Colombo, C.
    Spirkoska, D.
    Frimmer, M.
    Abstreiter, G.
    Morral, A. Fontcuberta I.
    PHYSICAL REVIEW B, 2008, 77 (15):
  • [35] Molecular Beam Epitaxy Growth of GaAs/InAs Core-Shell Nanowires and Fabrication of InAs Nanotubes
    Rieger, Torsten
    Luysberg, Martina
    Schaepers, Thomas
    Gruetzmacher, Detlev
    Lepsa, Mihail Ion
    NANO LETTERS, 2012, 12 (11) : 5559 - 5564
  • [36] Effect of substrate temperature on GaAs nanowires growth directly on Si (111) substrates by molecular beam epitaxy
    Oo, Kay Khaing
    Vorathamrong, Samatcha
    Panyakeow, Somsak
    Praserthdam, Piyasarn
    Ratanathammaphan, Somchai
    MATERIALS TODAY-PROCEEDINGS, 2020, 23 : 685 - 689
  • [37] Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy
    Bertness, K. A.
    Roshko, A.
    Mansfield, L. M.
    Harvey, T. E.
    Sanford, N. A.
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (13) : 3154 - 3158
  • [38] Molecular beam epitaxy growth and optical properties of AlN nanowires
    Landre, O.
    Fellmann, V.
    Jaffrennou, P.
    Bougerol, C.
    Renevier, H.
    Cros, A.
    Daudin, B.
    APPLIED PHYSICS LETTERS, 2010, 96 (06)
  • [39] Selective growth of ZnSe and ZnCdSe nanowires by molecular beam epitaxy
    Colli, A
    Hofmann, S
    Ferrari, AC
    Martelli, F
    Rubini, S
    Ducati, C
    Franciosi, A
    Robertson, J
    NANOTECHNOLOGY, 2005, 16 (05) : S139 - S142
  • [40] Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy
    Kasanaboina, Pavan Kumar
    Ahmad, Estiak
    Li, Jia
    Reynolds, C. Lewis, Jr.
    Liu, Yang
    Iyer, Shanthi
    APPLIED PHYSICS LETTERS, 2015, 107 (10)