Molecular beam epitaxy growth and optical properties of AlN nanowires

被引:45
|
作者
Landre, O. [1 ,2 ]
Fellmann, V. [1 ,2 ]
Jaffrennou, P. [1 ,2 ]
Bougerol, C. [1 ,2 ]
Renevier, H. [3 ]
Cros, A. [4 ]
Daudin, B. [1 ,2 ]
机构
[1] Univ Grenoble 1, CNRS, Inst Neel, CEA CNRS Grp, F-38054 Grenoble, France
[2] CEA Grenoble, INAC, SP2M, F-38054 Grenoble, France
[3] Grenoble INP MINATEC, Mat & Genie Phys Lab, F-38016 Grenoble, France
[4] Univ Valencia, Inst Mat Sci, E-46071 Valencia, Spain
关键词
aluminium compounds; elasticity; III-V semiconductors; molecular beam epitaxial growth; nanofabrication; nanowires; photoluminescence; plasma deposition; Raman spectra; semiconductor growth; semiconductor quantum wires; stress relaxation; transmission electron microscopy; wide band gap semiconductors; ALUMINUM NITRIDE; INTERFACE;
D O I
10.1063/1.3315943
中图分类号
O59 [应用物理学];
学科分类号
摘要
Growth of catalyst-free AlN nanowires has been achieved by plasma-assisted molecular beam epitaxy on SiO2/Si (100), by taking advantage of Volmer-Weber growth mode of AlN on amorphous SiO2. Using a combination of high resolution transmission electron microscopy and Raman spectroscopy, it is found that AlN nanowires are completely relaxed, which has been assigned to the compliant character of SiO2. Elastic strain relaxation of AlN nanowires has been further confirmed by photoluminescence experiments, showing in addition that spectra are dominated by near-band edge emission.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Optical and electrical properties of Mg-doped AlN nanowires grown by molecular beam epitaxy
    Connie, Ashfiqua Tahseen
    Zhao, Songrui
    Sadaf, Sharif Md
    Shih, Ishiang
    Mi, Zetian
    Du, Xiaozhang
    Lin, Jingyu
    Jiang, Hongxing
    APPLIED PHYSICS LETTERS, 2015, 106 (21)
  • [2] Optical properties of strain-free AlN nanowires grown by molecular beam epitaxy on Si substrates
    Wang, Q.
    Zhao, S.
    Connie, A. T.
    Shih, I.
    Mi, Z.
    Gonzalez, T.
    Andrews, M. P.
    Du, X. Z.
    Lin, J. Y.
    Jiang, H. X.
    APPLIED PHYSICS LETTERS, 2014, 104 (22)
  • [3] Structural Properties of GaN Nanowires and GaN/AlN Insertions Grown by Molecular Beam Epitaxy
    Bougerol, C.
    Songmuang, R.
    Camacho, D.
    Niquet, Y. M.
    Daudin, B.
    16TH INTERNATIONAL CONFERENCE ON MICROSCOPY OF SEMICONDUCTING MATERIALS, 2010, 209
  • [4] Molecular beam epitaxy growth and optical properties of InAsSbBi
    Schaefer, S. T.
    Kosireddy, R. R.
    Webster, P. T.
    Johnson, S. R.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (08)
  • [5] Growth and optical properties of AlN homoepitaxial layers grown by ammonia-source molecular beam epitaxy
    Iwata, Shiro
    Nanjo, Yoshiyuki
    Okuno, Toshihiro
    Kurai, Satoshi
    Taguchi, Tsunemasa
    JOURNAL OF CRYSTAL GROWTH, 2007, 301 : 461 - 464
  • [6] Growth of ZnSe nanowires by molecular beam epitaxy
    Colli, A
    Martelli, F
    Rubini, S
    Ducati, C
    Hofmann, S
    Ferrari, AC
    Robertson, J
    Franciosi, A
    2004 4TH IEEE CONFERENCE ON NANOTECHNOLOGY, 2004, : 177 - 179
  • [7] Growth of PbTe nanowires by molecular beam epitaxy
    Schellingerhout, Sander G.
    de Jong, Eline J.
    Gomanko, Maksim
    Guan, Xin
    Jiang, Yifan
    Hoskam, Max S. M.
    Jung, Jason
    Koelling, Sebastian
    Moutanabbir, Oussama
    Verheijen, Marcel A.
    Frolov, Sergey M.
    Bakkers, Erik P. A. M.
    MATERIALS FOR QUANTUM TECHNOLOGY, 2022, 2 (01):
  • [8] On the growth of InAs nanowires by molecular beam epitaxy
    Martelli, Faustino
    Rubini, Silvia
    Jabeen, Fauzia
    Felisari, Laura
    Grillo, Vincenzo
    JOURNAL OF CRYSTAL GROWTH, 2011, 323 (01) : 297 - 300
  • [9] Molecular beam epitaxy growth of wurtzite AlN nanotips
    Hsu, Kuang-Yuan
    Liu, Chuan-Pu
    Chung, Hung-Chin
    Chiu, Yu-Chen
    APPLIED PHYSICS LETTERS, 2008, 93 (18)
  • [10] Optical metrology for nanowires grown with molecular beam epitaxy
    Madsen, Jonas Skovlund Moller
    Jensen, Soren Alkaersig
    Kanne, Thomas
    Nygard, Jesper
    Hansen, Poul Erik
    QUANTUM DOTS, NANOSTRUCTURES, AND QUANTUM MATERIALS: GROWTH, CHARACTERIZATION, AND MODELING XVII, 2020, 11291