HYPERSPECTRAL STRIPES REMOVAL WITH WAVELET-DOMAIN LOW-RANK/GROUP-SPARSE DECOMPOSITION

被引:1
|
作者
Liu, Na [1 ]
Li, Wei [2 ]
Tao, Ran [2 ]
Fowler, James E. [3 ]
Yang, Lina [4 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
[4] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Destriping; hyperspectral imagery; low-rank decomposition; group sparsity; wavelet transform;
D O I
10.1109/whispers.2019.8921401
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Pushbroom acquisition of hyperspectral imagery is prone to striping artifacts in the along-track direction. A hyperspectral destriping algorithm is proposed such that subbands of a 2D wavelet transform most effected by pushbroom stripesnamely, those with spatially vertical orientation-are the exclusive focus of destriping. The proposed method features an iterative image decomposition composed of a low-rank model for the stripes coupled with a group-sparse prior on the wavelet coefficients of the subbands in question. Experimental results on both synthetically striped imagery demonstrate superior image quality for the proposed method as compared to other state-of-the-art methods.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Robust Low-Rank and Sparse Tensor Decomposition for Low-Rank Tensor Completion
    Shi, Yuqing
    Du, Shiqiang
    Wang, Weilan
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 7138 - 7143
  • [22] Low-rank and sparse matrix decomposition with background position estimation for hyperspectral anomaly detection
    Yang, Yixin
    Zhang, Jianqi
    Liu, Delian
    Wu, Xin
    INFRARED PHYSICS & TECHNOLOGY, 2019, 96 : 213 - 227
  • [23] Low-Rank Tensor Decomposition With Smooth and Sparse Regularization for Hyperspectral and Multispectral Data Fusion
    Ma, Fei
    Yang, Feixia
    Wang, Yanwei
    IEEE ACCESS, 2020, 8 : 129842 - 129856
  • [24] Unsupervised Robust Projection Learning by Low-Rank and Sparse Decomposition for Hyperspectral Feature Extraction
    Song, Xin
    Li, Heng-Chao
    Pan, Lei
    Deng, Yang-Jun
    Zhang, Pu
    You, Li
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [25] Relaxed Collaborative Representation With Low-Rank and Sparse Matrix Decomposition for Hyperspectral Anomaly Detection
    Su, Hongjun
    Zhang, Huihui
    Wu, Zhaoyue
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 6826 - 6842
  • [26] Pansharpening Based on Low-Rank and Sparse Decomposition
    Rong, Kaixuan
    Jiao, Licheng
    Wang, Shuang
    Liu, Fang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (12) : 4793 - 4805
  • [27] Sparse and low-rank matrix decomposition-based method for hyperspectral anomaly detection
    Kucuk, Fatma
    Toreyin, Behcet Ugur
    Celebi, Fatih Vehbi
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (01):
  • [28] Weighted Nonlocal Low-Rank Tensor Decomposition Method for Sparse Unmixing of Hyperspectral Images
    Sun, Le
    Wu, Feiyang
    Zhan, Tianming
    Liu, Wei
    Wang, Jin
    Jeon, Byeungwoo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 1174 - 1188
  • [29] Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery
    Sun, Weiwei
    Liu, Chun
    Li, Jialin
    Lai, Yenming Mark
    Li, Weiyue
    JOURNAL OF APPLIED REMOTE SENSING, 2014, 8
  • [30] Local hyperspectral anomaly detection method based on low-rank and sparse matrix decomposition
    Chang, Hongwei
    Wang, Tao
    Li, Aihua
    Fang, Hao
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (02)