Visual Analytics for Detecting Behaviour Patterns in Geo-Temporal Data

被引:0
|
作者
Hundt, Michael [1 ]
Siirak, Natascha M. [1 ]
Wildner, Manuel [1 ]
机构
[1] Univ Konstanz, Constance, Germany
关键词
H.1.2 [User/Machine Systems]: Human information processing; H.2.8 [Database Applications]: Data Mining-Spatial databases and GIS; H.3.3 [Information Search and Retrieval]: Information filtering; VISUALIZATION; DESIGN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Today raw data get more complex and are obtained from different sources. In this paper, the data sources evaluated are GPS tracks of thirty five cards and purchase records of fifty four persons over a time span of two weeks. Additionally, a map and more background information has been provided. Visual Analytics is indispensable for event-and pattern-recognition and the understanding of as well as getting a sense for spatial properties. This paper describes a journey from dealing with geo-temporal data over creating a data foundation for further means to an exploration tool that enables every user to access the data in an interactive, fast and non-exhausting way.
引用
收藏
页码:355 / 356
页数:2
相关论文
共 50 条
  • [41] Geo-temporal distribution of tag terms for event-related image retrieval
    Ruocco, Massimiliano
    Ramampiaro, Heri
    INFORMATION PROCESSING & MANAGEMENT, 2015, 51 (01) : 92 - 110
  • [42] EngineQV: Investigating External Cause of Engine Failures Based on Geo-temporal Association
    Wang, Yan Chao
    Zhang, Qian
    Lin, Feng
    Seah, Hock Soon
    2019 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS 2019), 2019, : 184 - 188
  • [43] Visual analytics of sensor movement data for cheetah behaviour analysis
    Karsten Klein
    Sabrina Jaeger
    Jörg Melzheimer
    Bettina Wachter
    Heribert Hofer
    Artur Baltabayev
    Falk Schreiber
    Journal of Visualization, 2021, 24 : 807 - 825
  • [44] Data Mining Meets HCI: Data and Visual Analytics of Frequent Patterns
    Leung, Carson K.
    Carmichael, Christopher L.
    Hayduk, Yaroslav
    Jiang, Fan
    Kononov, Vadim V.
    Pazdor, Adam G. M.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2016, PT III, 2016, 9853 : 289 - 293
  • [45] Modeling Risk: The Use of Geo-Temporal Models for Focusing Risk Reduction Interventions
    Daszak, Peter
    Bogich, Tiffany
    Hosseini, Parviez
    Zambrana-Torrellio, Carlos
    Olival, Kevin
    Mazet, Jonna
    Morse, Stephen S.
    ECOHEALTH, 2011, 7 : S135 - S135
  • [46] Visual analytics of sensor movement data for cheetah behaviour analysis
    Klein, Karsten
    Jaeger, Sabrina
    Melzheimer, Joerg
    Wachter, Bettina
    Hofer, Heribert
    Baltabayev, Artur
    Schreiber, Falk
    JOURNAL OF VISUALIZATION, 2021, 24 (04) : 807 - 825
  • [47] Visual Analytics Methods for Categoric Spatio-Temporal Data
    von Landesberger, T.
    Bremm, Sebastian
    Andrienko, Natalia
    Andrienko, Gennady
    Tekusova, Maria
    2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 183 - 192
  • [48] Japanese behavior in Visual Analytics of Temporal Daily Life Data
    Itoh, Takayuku
    2014 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2014, : 348 - 349
  • [49] TimeCluster: dimension reduction applied to temporal data for visual analytics
    Mohammed Ali
    Mark W. Jones
    Xianghua Xie
    Mark Williams
    The Visual Computer, 2019, 35 : 1013 - 1026
  • [50] TimeCluster: dimension reduction applied to temporal data for visual analytics
    Ali, Mohammed
    Jones, Mark W.
    Xie, Xianghua
    Williams, Mark
    VISUAL COMPUTER, 2019, 35 (6-8): : 1013 - 1026