A simulation tool for mechanical circulatory support device interaction with diseased states

被引:6
|
作者
Horvath, David J. [1 ]
Horvath, Dennis W. [1 ]
Karimov, Jamshid H. [2 ]
Kuban, Barry D. [3 ]
Miyamoto, Takuma [2 ]
Fukamachi, Kiyotaka [2 ]
机构
[1] R1 Engn, Euclid, OH USA
[2] Cleveland Clin, Lerner Res Inst, Dept Biomed Engn ND20, 9500 Euclid Ave, Cleveland, OH 44195 USA
[3] Cleveland Clin, Elect Core, Cleveland, OH 44106 USA
关键词
Cardiovascular disease; Computer simulation; Mock circulation loop; Lumped parameter; Pumps; Heart assist; CARDIOVASCULAR DYNAMICS; NUMERICAL-SIMULATION; LOOP;
D O I
10.1007/s10047-020-01155-2
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We have created a simulation model to investigate the interactions between a variety of mechanical circulatory support (MCS) devices and the circulatory system with various simulated patient conditions and disease states. The present simulation accommodates a family of continuous-flow MCS devices under various stages of consideration or development at our institution. This article describes the mathematical core of the in silico simulation system and shows examples of simulation output imitating various disease states and of selected in vitro and clinical data from the literature.
引用
收藏
页码:124 / 132
页数:9
相关论文
共 50 条
  • [21] Device Thrombogenicity Emulation: A Novel Method for Optimizing Mechanical Circulatory Support Device Thromboresistance
    Girdhar, Gaurav
    Xenos, Michalis
    Alemu, Yared
    Chiu, Wei-Che
    Lynch, Bryan E.
    Jesty, Jolyon
    Einav, Shmuel
    Slepian, Marvin J.
    Bluestein, Danny
    PLOS ONE, 2012, 7 (03):
  • [22] Preclinical performance of a pediatric mechanical circulatory support device: The PediaFlow ventricular assist device
    Olia, Salim E.
    Wearden, Peter D.
    Maul, Timothy M.
    Shankarraman, Venkat
    Kocyildirim, Ergin
    Snyder, Shaun T.
    Callahan, Patrick M.
    Kameneva, Marina V.
    Wagner, William R.
    Borovetz, Harvey S.
    Antaki, James F.
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2018, 156 (04): : 1643 - +
  • [23] Mechanical Circulatory Support
    Greenwood, John C.
    Herr, Daniel L.
    EMERGENCY MEDICINE CLINICS OF NORTH AMERICA, 2014, 32 (04) : 851 - +
  • [24] Mechanical circulatory support
    Richenbacher, WE
    Pierce, WS
    ANNALS OF THORACIC SURGERY, 1996, 62 (05): : 1558 - 1559
  • [25] Mechanical circulatory support
    Subramaniam, Kathirvel
    BEST PRACTICE & RESEARCH-CLINICAL ANAESTHESIOLOGY, 2015, 29 (02) : 203 - 227
  • [26] The Optimization of Mechanical Circulatory Support Device Combination Considering Ventricular Load in Biventricular Failure Condition: A Simulation Study
    Matsushita, Hiroki
    Nishikawa, Takuya
    Yokota, Shohei
    Kakuuchi, Midori
    Yokoi, Aimi
    Nishiura, Akitsugu
    Uemura, Kazunori
    Kawada, Toru
    Li, Meihua
    Saku, Keita
    CIRCULATION, 2022, 146
  • [27] Mechanical circulatory support
    Kozik, Deborah J.
    Plunkett, Mark D.
    ORGANOGENESIS, 2011, 7 (01) : 50 - 63
  • [28] Mechanical Circulatory Support
    Tam, Christopher W.
    Shen, Liang
    Zeidman, Amanda Dijanic
    Srivastava, Ankur
    Ivascu, Natalia S.
    CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 17 (06): : 890 - 901
  • [29] Mechanical circulatory support in infants and adults with the MEDOS/HIA assist device
    Kaczmarek, I
    Mair, H
    Groetzner, J
    Sachweh, J
    Oberhoffer, M
    Fuchs, A
    Reichart, B
    Daebritz, S
    ARTIFICIAL ORGANS, 2005, 29 (10) : 857 - 860
  • [30] A Novel, Implantable Device for Right-Side Mechanical Circulatory Support
    Stanfield, J. R.
    Long, J. W.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2017, 36 (04): : S14 - S14