Automated detection of shockable ECG signals: A review

被引:43
|
作者
Hammad, Mohamed [1 ]
Kandala, Rajesh N. V. P. S. [2 ]
Abdelatey, Amira [3 ]
Abdar, Moloud [4 ]
Zomorodi-Moghadam, Mariam [5 ,6 ]
Tan, Ru San [7 ,8 ]
Acharya, U. Rajendra [9 ,10 ,11 ]
Plawiak, Joanna [6 ]
Tadeusiewicz, Ryszard [12 ]
Makarenkov, Vladimir [13 ]
Sarrafzadegan, Nizal [14 ,15 ]
Khosravi, Abbas [4 ]
Nahavandi, Saeid [4 ]
Abd EL-Latif, Ahmed A. [16 ,17 ,18 ]
Plawiak, Pawel [6 ,19 ]
机构
[1] Menoufia Univ, Fac Comp & Informat, Dept Informat Technol, Menoufia, Egypt
[2] GayatriVidyaParishad Coll Engn A, Dept ECE, Visakhapatnam, Andhra Pradesh, India
[3] Menoufia Univ, Fac Comp & Informat, Dept Comp Sci, Menoufia, Egypt
[4] Deakin Univ, Inst Intelligent Syst Res & Innovat IISRI, Geelong, Vic, Australia
[5] Ferdowsi Univ Mashhad, Dept Comp Engn, Mashhad, Razavi Khorasan, Iran
[6] Cracow Univ Technol, Fac Comp Sci & Telecommun, Dept Comp Sci, Warszawska 24, PL-31155 Krakow, Poland
[7] Natl Heart Ctr Singapore, Dept Cardiol, Singapore, Singapore
[8] Duke NUS Med Sch, Singapore, Singapore
[9] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore, Singapore
[10] Singapore Sch Social Sci, Sch Sci & Technol, Dept Biomed Engn, Singapore, Singapore
[11] Asia Univ, Dept Bioinformat & Med Engn, Taichung, Taiwan
[12] AGH Univ Sci & Technol, Dept Biocybernet & Biomed Engn, Krakow, Poland
[13] Univ Quebec Montreal, Dept Comp Sci, Montreal, PQ H2X 3Y7, Canada
[14] Isfahan Univ Med Sci, Cardiovasc Res Inst, Isfahan Cardiovasc Res Ctr, Esfahan 8174673461, Iran
[15] Univ British Columbia, Sch Populat & Publ Hlth, Fac Med, Vancouver, BC, Canada
[16] Menoufia Univ, Fac Sci, Math & Comp Sci Dept, Shibin Al Kawm 32511, Egypt
[17] Nile Univ, Sch Informat Technol & Comp Sci, Giza, Egypt
[18] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150080, Peoples R China
[19] Polish Acad Sci, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
关键词
Electrocardiogram (ECG); Arrhythmia; Computer-aided arrhythmia classification (CAAC); Signal processing; Machine learning; Deep learning; Ensemble learning; Feature extraction; Feature selection; Optimization; CONVOLUTION NEURAL-NETWORK; THREATENING VENTRICULAR-ARRHYTHMIAS; DEEP LEARNING APPROACH; REAL-TIME DETECTION; ATRIAL-FIBRILLATION; RECURRENCE PLOTS; CLASSIFICATION; DIAGNOSIS; ALGORITHM; MODEL;
D O I
10.1016/j.ins.2021.05.035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sudden cardiac death from lethal arrhythmia is a preventable cause of death. Ventricular fibrillation and tachycardia are shockable electrocardiographic (ECG)rhythms that can respond to emergency electrical shock therapy and revert to normal sinus rhythm if diagnosed early upon cardiac arrest with the restoration of adequate cardiac pump function. However, manual inspection of ECG signals is a difficult task in the acute setting. Thus, computer-aided arrhythmia classification (CAAC) systems have been developed to detect shockable ECG rhythm. Traditional machine learning and deep learning methods are now progressively employed to enhance the diagnostic accuracy of CAAC systems. This paper reviews the state-of-the-art machine and deep learning based CAAC expert systems for shockable ECG signal recognition, discussing their strengths, advantages, and drawbacks. Moreover, unique bispectrum and recurrence plots are proposed to represent shockable and non-shockable ECG signals. Deep learning methods are usually more robust and accurate than standard machine learning methods but require big data of good quality for training. We recommend collecting large accessible ECG datasets with a meaningful proportion of abnormal cases for research and development of superior CAAC systems. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:580 / 604
页数:25
相关论文
共 50 条
  • [1] A Review of Shockable Arrhythmia Detection of ECG Signals Using Machine and Deep Learning Techniques
    Kavya, Lakkakula
    Karuna, Yepuganti
    Saritha, Saladi
    Prakash, Allam Jaya
    Patro, Kiran Kumar
    Sahoo, Suraj Prakash
    Tadeusiewicz, Ryszard
    Plawiak, Pawel
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2024, 34 (03) : 485 - 511
  • [2] Automated detection of shockable and non-shockable arrhythmia using novel wavelet-based ECG features
    Sharma, Manish
    Singh, Swapnil
    Kumar, Abhishek
    Tan, Ru San
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 115
  • [3] Comparative assessment of shockable ECG rhythm detection algorithms in automated external defibrillators
    Clifford, AC
    RESUSCITATION, 1996, 32 (03) : 217 - 225
  • [4] Entropies for automated detection of coronary artery disease using ECG signals: A review
    Acharya, Udyavara Rajendra
    Hagiwara, Yuki
    Koh, Joel En Wei
    Oh, Shu Lih
    Tan, Jen Hong
    Adam, Muhammad
    Tan, Ru San
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2018, 38 (02) : 373 - 384
  • [5] Automated ECG Signals Analysis for Cardiac Abnormality Detection and Classification
    Abagaro, Ahmed Mohammed
    Barki, Hika
    Ayana, Gelan
    Dawud, Ahmed Ali
    Thamineni, Bheema Lingaiah
    Jemal, Towfik
    Choe, Se-woon
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024, 19 (05) : 3355 - 3371
  • [6] Robust automated cardiac arrhythmia detection in ECG beat signals
    de Albuquerque, Victor Hugo C.
    Nunes, Thiago M.
    Pereira, Danillo R.
    Luz, Eduardo Jose da S.
    Menotti, David
    Papa, Joao P.
    Tavares, Joao Manuel R. S.
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (03): : 679 - 693
  • [7] Robust automated cardiac arrhythmia detection in ECG beat signals
    Victor Hugo C. de Albuquerque
    Thiago M. Nunes
    Danillo R. Pereira
    Eduardo José da S. Luz
    David Menotti
    João P. Papa
    João Manuel R. S. Tavares
    Neural Computing and Applications, 2018, 29 : 679 - 693
  • [8] Automated anxiety detection using probabilistic binary pattern with ECG signals
    Baygin, Mehmet
    Barua, Prabal Datta
    Dogan, Sengul
    Tuncer, Turker
    Hong, Tan Jen
    March, Sonja
    Tan, Ru-San
    Molinari, Filippo
    Acharya, U. Rajendra
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 247
  • [9] AUTOMATED DETECTION OF ATRIAL FLUTTER AND FIBRILLATION USING ECG SIGNALS IN WAVELET FRAMEWORK
    Martis, Roshan Joy
    Prasad, Hari
    Chakraborty, Chandan
    Ray, Ajoy Kumar
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2012, 12 (05)
  • [10] Automated Atrial Fibrillation Detection by ECG Signal Processing: A Review
    Giraldo-Guzmán J.
    Contreras-Ortiz S.H.
    Kotas M.
    Castells F.
    Moroń T.
    Critical Reviews in Biomedical Engineering, 2021, 49 (03) : 31 - 50