Automated detection of shockable ECG signals: A review

被引:43
|
作者
Hammad, Mohamed [1 ]
Kandala, Rajesh N. V. P. S. [2 ]
Abdelatey, Amira [3 ]
Abdar, Moloud [4 ]
Zomorodi-Moghadam, Mariam [5 ,6 ]
Tan, Ru San [7 ,8 ]
Acharya, U. Rajendra [9 ,10 ,11 ]
Plawiak, Joanna [6 ]
Tadeusiewicz, Ryszard [12 ]
Makarenkov, Vladimir [13 ]
Sarrafzadegan, Nizal [14 ,15 ]
Khosravi, Abbas [4 ]
Nahavandi, Saeid [4 ]
Abd EL-Latif, Ahmed A. [16 ,17 ,18 ]
Plawiak, Pawel [6 ,19 ]
机构
[1] Menoufia Univ, Fac Comp & Informat, Dept Informat Technol, Menoufia, Egypt
[2] GayatriVidyaParishad Coll Engn A, Dept ECE, Visakhapatnam, Andhra Pradesh, India
[3] Menoufia Univ, Fac Comp & Informat, Dept Comp Sci, Menoufia, Egypt
[4] Deakin Univ, Inst Intelligent Syst Res & Innovat IISRI, Geelong, Vic, Australia
[5] Ferdowsi Univ Mashhad, Dept Comp Engn, Mashhad, Razavi Khorasan, Iran
[6] Cracow Univ Technol, Fac Comp Sci & Telecommun, Dept Comp Sci, Warszawska 24, PL-31155 Krakow, Poland
[7] Natl Heart Ctr Singapore, Dept Cardiol, Singapore, Singapore
[8] Duke NUS Med Sch, Singapore, Singapore
[9] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore, Singapore
[10] Singapore Sch Social Sci, Sch Sci & Technol, Dept Biomed Engn, Singapore, Singapore
[11] Asia Univ, Dept Bioinformat & Med Engn, Taichung, Taiwan
[12] AGH Univ Sci & Technol, Dept Biocybernet & Biomed Engn, Krakow, Poland
[13] Univ Quebec Montreal, Dept Comp Sci, Montreal, PQ H2X 3Y7, Canada
[14] Isfahan Univ Med Sci, Cardiovasc Res Inst, Isfahan Cardiovasc Res Ctr, Esfahan 8174673461, Iran
[15] Univ British Columbia, Sch Populat & Publ Hlth, Fac Med, Vancouver, BC, Canada
[16] Menoufia Univ, Fac Sci, Math & Comp Sci Dept, Shibin Al Kawm 32511, Egypt
[17] Nile Univ, Sch Informat Technol & Comp Sci, Giza, Egypt
[18] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150080, Peoples R China
[19] Polish Acad Sci, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
关键词
Electrocardiogram (ECG); Arrhythmia; Computer-aided arrhythmia classification (CAAC); Signal processing; Machine learning; Deep learning; Ensemble learning; Feature extraction; Feature selection; Optimization; CONVOLUTION NEURAL-NETWORK; THREATENING VENTRICULAR-ARRHYTHMIAS; DEEP LEARNING APPROACH; REAL-TIME DETECTION; ATRIAL-FIBRILLATION; RECURRENCE PLOTS; CLASSIFICATION; DIAGNOSIS; ALGORITHM; MODEL;
D O I
10.1016/j.ins.2021.05.035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sudden cardiac death from lethal arrhythmia is a preventable cause of death. Ventricular fibrillation and tachycardia are shockable electrocardiographic (ECG)rhythms that can respond to emergency electrical shock therapy and revert to normal sinus rhythm if diagnosed early upon cardiac arrest with the restoration of adequate cardiac pump function. However, manual inspection of ECG signals is a difficult task in the acute setting. Thus, computer-aided arrhythmia classification (CAAC) systems have been developed to detect shockable ECG rhythm. Traditional machine learning and deep learning methods are now progressively employed to enhance the diagnostic accuracy of CAAC systems. This paper reviews the state-of-the-art machine and deep learning based CAAC expert systems for shockable ECG signal recognition, discussing their strengths, advantages, and drawbacks. Moreover, unique bispectrum and recurrence plots are proposed to represent shockable and non-shockable ECG signals. Deep learning methods are usually more robust and accurate than standard machine learning methods but require big data of good quality for training. We recommend collecting large accessible ECG datasets with a meaningful proportion of abnormal cases for research and development of superior CAAC systems. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:580 / 604
页数:25
相关论文
共 50 条
  • [21] PQRST wave detection on ECG signals
    Madona, Putri
    Basti, Rahmat Ilias
    Zain, Muhammad Mahrus
    GACETA SANITARIA, 2021, 35 : S364 - S369
  • [22] Automated detection of premature ventricular contraction in ECG signals using enhanced template matching algorithm
    Malek, Abdel Salam
    Elnahrawy, Ashraf
    Anwar, Hamed
    Naeem, Mohamed
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2020, 6 (01):
  • [23] Automated accurate insomnia detection system using wavelet scattering method using ECG signals
    Nishant Sharma
    Manish Sharma
    Hardik Telangore
    U Rajendra Acharya
    Applied Intelligence, 2024, 54 : 3464 - 3481
  • [24] Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
    Acharya, U. Rajendra
    Fujita, Hamido
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adam, Muhammad
    INFORMATION SCIENCES, 2017, 415 : 190 - 198
  • [25] Automated accurate insomnia detection system using wavelet scattering method using ECG signals
    Sharma, Nishant
    Sharma, Manish
    Telangore, Hardik
    Acharya, U. Rajendra
    APPLIED INTELLIGENCE, 2024, 54 (04) : 3464 - 3481
  • [26] Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators
    Figuera, Carlos
    Irusta, Unai
    Morgado, Eduardo
    Aramendi, Elisabete
    Ayala, Unai
    Wik, Lars
    Kramer-Johansen, Jo
    Eftestol, Trygve
    Alonso-Atienza, Felipe
    PLOS ONE, 2016, 11 (07):
  • [27] A review of feature extraction from ecg signals and classification/detection for ventricular arrhythmias
    Rajeshwari M.R.
    Kavitha K.S.
    Recent Advances in Computer Science and Communications, 2021, 14 (01) : 227 - 235
  • [28] Automated Atrial Fibrillation Detection with ECG
    Wei, Ting-Ruen
    Lu, Senbao
    Yan, Yuling
    BIOENGINEERING-BASEL, 2022, 9 (10):
  • [29] Automated epilepsy detection techniques from electroencephalogram signals: a review study
    Supriya, Supriya
    Siuly, Siuly
    Wang, Hua
    Zhang, Yanchun
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2020, 8 (01)
  • [30] Automated epilepsy detection techniques from electroencephalogram signals: a review study
    Supriya Supriya
    Siuly Siuly
    Hua Wang
    Yanchun Zhang
    Health Information Science and Systems, 8