Robust automated cardiac arrhythmia detection in ECG beat signals

被引:53
|
作者
de Albuquerque, Victor Hugo C. [1 ]
Nunes, Thiago M. [2 ]
Pereira, Danillo R. [3 ]
Luz, Eduardo Jose da S. [4 ]
Menotti, David [5 ]
Papa, Joao P. [3 ]
Tavares, Joao Manuel R. S. [6 ]
机构
[1] Univ Fortaleza, Programa Posgrad Informat Aplicada, Lab Bioinformat, Fortaleza, CE, Brazil
[2] Univ Fortaleza, Ctr Ciencias Tecnol, Fortaleza, CE, Brazil
[3] Univ Estadual Paulista, Dept Ciencia Comp, Bauru, SP, Brazil
[4] Univ Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil
[5] Univ Fed Parana, Dept Informat, Curitiba, PR, Brazil
[6] Univ Porto, Fac Engn, Dept Engn Mecan, Inst Ciencia & Inovacao Engn Mecan & Engn Ind, Oporto, Portugal
来源
NEURAL COMPUTING & APPLICATIONS | 2018年 / 29卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
ECG heart beats; Electrophysiological signals; Cardiac dysrhythmia classification; Feature extraction; Pattern recognition; Optimum-path forest; NEURAL-NETWORK; HEARTBEAT CLASSIFICATION; RECOGNITION; SELECTION; FEATURES; DATABASE; IMPACT;
D O I
10.1007/s00521-016-2472-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases.
引用
收藏
页码:679 / 693
页数:15
相关论文
共 50 条
  • [1] Robust automated cardiac arrhythmia detection in ECG beat signals
    Victor Hugo C. de Albuquerque
    Thiago M. Nunes
    Danillo R. Pereira
    Eduardo José da S. Luz
    David Menotti
    João P. Papa
    João Manuel R. S. Tavares
    Neural Computing and Applications, 2018, 29 : 679 - 693
  • [2] Cardiac Arrhythmia Detection through ECG Signals
    Patil, Anita
    Edake, Ravina D.
    2018 4TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2018,
  • [3] DETECTION OF CARDIAC ARRHYTHMIA FROM ECG SIGNALS
    Arumugam, Maheswari
    Sangaiah, Arun Kumar
    IIOAB JOURNAL, 2015, 6 (04) : 24 - 31
  • [4] Automated ECG Signals Analysis for Cardiac Abnormality Detection and Classification
    Abagaro, Ahmed Mohammed
    Barki, Hika
    Ayana, Gelan
    Dawud, Ahmed Ali
    Thamineni, Bheema Lingaiah
    Jemal, Towfik
    Choe, Se-woon
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024, 19 (05) : 3355 - 3371
  • [5] Real-Time Classification for Cardiac Arrhythmia ECG Beat
    Ihsanto, Eko
    Ramli, Kalamullah
    Sudiana, Dodi
    2019 16TH INTERNATIONAL CONFERENCE ON QUALITY IN RESEARCH (QIR) / INTERNATIONAL SYMPOSIUM ON ELECTRICAL AND COMPUTER ENGINEERING, 2019, : 64 - 68
  • [6] Statistical Analysis of ECG signals for Arrhythmia Detection
    Nayak, G. S.
    Puttamadappa, C.
    Kamatha, A. Surekha
    4TH KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2008, VOLS 1 AND 2, 2008, 21 (1-2): : 251 - +
  • [7] Validation of automated arrhythmia detection for Holter ECG
    Chang, CL
    Lin, KP
    Tao, TH
    Kao, T
    Chang, WH
    PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 20, PTS 1-6: BIOMEDICAL ENGINEERING TOWARDS THE YEAR 2000 AND BEYOND, 1998, 20 : 101 - 103
  • [8] Robust beat detection on noisy differential ECG
    Lavric, Primoz
    Depolli, Matjaz
    2016 39TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2016, : 381 - 386
  • [9] Automated classification of cardiac arrhythmia using short-duration ECG signals and machine learning
    Biswakarma, Amar Bahadur
    Rahul, Jagdeep
    Kurmendra
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2025, 11 (02):
  • [10] CARDIAC ARRHYTHMIA DETECTION IN AN ECG BEAT SIGNAL USING 1D CONVOLUTION NEURAL NETWORK
    Hasan, Md Abid
    Munia, Eshrat Jahan
    Pritom, Shadman Kamal
    Setu, Mehzad Hossain
    Ali, M. Tanseer
    Fahim, Sadman Chowdhury
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 352 - 357