Limit varieties of aperiodic monoids with commuting idempotents

被引:3
|
作者
Gusev, S., V [1 ]
机构
[1] Ural Fed Univ, Inst Nat Sci & Math, Lenina 51, Ekaterinburg 620000, Russia
关键词
Monoid; variety; limit variety; finite basis problem; SETS;
D O I
10.1142/S0219498821501607
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A variety of algebras is called limit if it is nonfinitely-based but all its proper subvarieties are finitely-based. A monoid is aperiodic if all its subgroups are trivial. We classify all limit varieties of aperiodic monoids with commuting idempotents.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A characterisation of a class of semigroups with locally commuting idempotents
    Khan T.A.
    Lawson M.V.
    Periodica Mathematica Hungarica, 2000, 40 (2) : 85 - 107
  • [42] MORITA EQUIVALENCE OF SEMIGROUPS WITH LOCALLY COMMUTING IDEMPOTENTS
    Afara, B.
    Lawson, M. V.
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (06) : 1982 - 1996
  • [43] NONADDITIVE COMMUTING MAPS OF UNITAL RINGS WITH IDEMPOTENTS
    Qi, Xiaofei
    Feng, Liqin
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (03) : 989 - 1000
  • [44] Regularity and products of idempotents in endomorphism monoids of projective acts
    BulmanFleming, S
    MATHEMATIKA, 1995, 42 (84) : 354 - 367
  • [45] Primitive orthogonal idempotents for R-trivial monoids
    Berg, Chris
    Bergeron, Nantel
    Bhargava, Sandeep
    Saliola, Franco
    JOURNAL OF ALGEBRA, 2011, 348 (01) : 446 - 461
  • [46] Commuting graph of an aperiodic Brandt Semigroup
    Kumar, Jitender
    Dalal, Sandeep
    Pandey, Pranav
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (01) : 127 - 150
  • [47] REDUCTION ALGORITHMS FOR SOME CLASSES OF APERIODIC MONOIDS
    KONIG, R
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1985, 19 (03): : 233 - 260
  • [48] 2 EXAMPLES IN VARIETIES OF MONOIDS
    ISBELL, JR
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1970, 68 : 265 - &
  • [49] RINGS WHOSE ELEMENTS ARE SUMS OF FOUR COMMUTING IDEMPOTENTS
    Danchev, Peter V.
    HONAM MATHEMATICAL JOURNAL, 2019, 41 (02): : 321 - 328
  • [50] On endomorphism monoids in varieties of bands
    Goralcik, P.
    Koubek, V.
    Sichler, J.
    ALGEBRA UNIVERSALIS, 2016, 76 (02) : 287 - 292