MORITA EQUIVALENCE OF SEMIGROUPS WITH LOCALLY COMMUTING IDEMPOTENTS

被引:2
|
作者
Afara, B. [1 ]
Lawson, M. V. [1 ,2 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
Commuting idempotents; Inverse categories; Morita theory; Semigroups; REES MATRIX COVERS; REGULAR-SEMIGROUPS; INVERSE-SEMIGROUPS; ENLARGEMENTS;
D O I
10.1080/00927872.2011.569904
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize those semigroups with local units which are Morita equivalent to semigroups with local units having commuting idempotents. A key element in this characterization is a description of those inverse categories which are equivalent to Cauchy completions of inverse semigroups.
引用
收藏
页码:1982 / 1996
页数:15
相关论文
共 50 条
  • [1] A characterisation of a class of semigroups with locally commuting idempotents
    Khan T.A.
    Lawson M.V.
    Periodica Mathematica Hungarica, 2000, 40 (2) : 85 - 107
  • [2] Rees matrix covers for a class of semigroups with locally commuting idempotents
    Khan, TA
    Lawson, MV
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2001, 44 : 173 - 186
  • [3] Strongly locally testable semigroups with commuting idempotents and related languages
    Selmi, Carla
    Theoretical Informatics and Applications, 1999, 33 (01): : 47 - 57
  • [4] Strongly locally testable semigroups with commuting idempotents and related languages
    Selmi, C
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1999, 33 (01): : 47 - 57
  • [5] Semigroups of transformations commuting with idempotents
    Konieczny, J
    ALGEBRA COLLOQUIUM, 2002, 9 (02) : 121 - 134
  • [6] MORITA EQUIVALENCE FOR SEMIGROUPS
    TALWAR, S
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1995, 59 : 81 - 111
  • [7] FINITE-SEMIGROUPS WITH COMMUTING IDEMPOTENTS
    ASH, CJ
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1987, 43 : 81 - 90
  • [8] Morita equivalence of inverse semigroups
    B. Afara
    M. V. Lawson
    Periodica Mathematica Hungarica, 2013, 66 : 119 - 130
  • [9] Morita Equivalence for Factorisable Semigroups
    Yu Qun Chen
    K. P. Shum
    Acta Mathematica Sinica, 2001, 17 : 437 - 454
  • [10] Fair semigroups and Morita equivalence
    Valdis Laan
    László Márki
    Semigroup Forum, 2016, 92 : 633 - 644