Modeling and prediction for multivariate spatial factor analysis

被引:18
|
作者
Christensen, WF
Amemiya, Y
机构
[1] Brigham Young Univ, Dept Stat, Provo, UT 84602 USA
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
关键词
geo-referenced data; latent variables; model building; kriging;
D O I
10.1016/S0378-3758(02)00173-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Factor analysis of multivariate spatial data is considered. A systematic approach for modeling the underlying structure of potentially irregularly spaced, geo-referenced vector observations is proposed. Statistical inference procedures for selecting the number of factors and for model building are discussed. We derive a condition under which a simple and practical inference procedure is valid without specifying the form of distributions and factor covariance functions. The multivariate prediction problem is also discussed, and a procedure combining the latent variable modeling and a measurement-error-free kriging technique is introduced. Simulation results and an example using agricultural data are presented. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:543 / 564
页数:22
相关论文
共 50 条
  • [41] Multivariate Spatial Analysis of Climate Change Projections
    Greasby, Tamara A.
    Sain, Stephan R.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2011, 16 (04) : 571 - 585
  • [42] Latent variable analysis of multivariate spatial data
    Christensen, WF
    Amemiya, Y
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 302 - 317
  • [43] Multivariate analysis of variance using spatial ranks
    Choi, K
    Marden, J
    SOCIOLOGICAL METHODS & RESEARCH, 2002, 30 (03) : 341 - 366
  • [44] Multivariate Spatial Analysis of Climate Change Projections
    Tamara A. Greasby
    Stephan R. Sain
    Journal of Agricultural, Biological, and Environmental Statistics, 2011, 16 : 571 - 585
  • [45] Integration of Multivariate Analysis and Spatial Modeling to Assess Agricultural Potentiality in Farafra Oasis, Western Desert of Egypt
    Abuzaid, Ahmed
    Abdellatif, Abdellatif
    EGYPTIAN JOURNAL OF SOIL SCIENCE, 2021, 61 (02): : 201 - 218
  • [46] Modeling and prediction of multivariate space-time random fields
    De Iaco, S
    Palma, M
    Posa, D
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 48 (03) : 525 - 547
  • [47] Bayesian multivariate spatial modeling for crash frequencies by injury severity at daytime and nighttime in traffic analysis zones
    Zeng, Qiang
    Wang, Fangzhou
    Wang, Qianfang
    Pei, Xin
    Yuan, Quan
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2023, 15 (06): : 553 - 560
  • [48] Application of Neural Networks on multivariate time series modeling and prediction
    Han, Min
    Fan, Mingming
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 3698 - +
  • [49] Multivariate vehicular traffic flow prediction - Evaluation of ARIMAX modeling
    Williams, BM
    TRAFFIC FLOW THEORY AND HIGHWAY CAPACITY 2001: HIGHWAY OPERATIONS, CAPACITY, AND TRAFFIC CONTROL, 2001, National Research Council (1776): : 194 - 200
  • [50] FORTRAN programs for space-time multivariate modeling and prediction
    De Iaco, S.
    Myers, D. E.
    Palma, M.
    Posa, D.
    COMPUTERS & GEOSCIENCES, 2010, 36 (05) : 636 - 646