Modeling and prediction for multivariate spatial factor analysis

被引:18
|
作者
Christensen, WF
Amemiya, Y
机构
[1] Brigham Young Univ, Dept Stat, Provo, UT 84602 USA
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
关键词
geo-referenced data; latent variables; model building; kriging;
D O I
10.1016/S0378-3758(02)00173-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Factor analysis of multivariate spatial data is considered. A systematic approach for modeling the underlying structure of potentially irregularly spaced, geo-referenced vector observations is proposed. Statistical inference procedures for selecting the number of factors and for model building are discussed. We derive a condition under which a simple and practical inference procedure is valid without specifying the form of distributions and factor covariance functions. The multivariate prediction problem is also discussed, and a procedure combining the latent variable modeling and a measurement-error-free kriging technique is introduced. Simulation results and an example using agricultural data are presented. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:543 / 564
页数:22
相关论文
共 50 条
  • [31] Multivariate spatial prediction based on Andrews curves and functional geostatistics
    Duenas, Maria
    Giraldo, Ramon
    CHILEAN JOURNAL OF STATISTICS, 2022, 13 (01): : 3 - 16
  • [32] Prediction of housing location price by a multivariate spatial method: Cokriging
    Chica-Olmo, Jorge
    JOURNAL OF REAL ESTATE RESEARCH, 2007, 29 (01) : 91 - 114
  • [33] Modeling and prediction of TEC based on multivariate analysis and kernel-based extreme learning machine
    Yarrakula, Mallika
    Prabakaran, N.
    Dabbakuti, J. R. K. Kumar
    ASTROPHYSICS AND SPACE SCIENCE, 2022, 367 (03)
  • [34] Modeling and prediction of TEC based on multivariate analysis and kernel-based extreme learning machine
    Mallika Yarrakula
    Prabakaran N
    J. R. K. Kumar Dabbakuti
    Astrophysics and Space Science, 2022, 367
  • [35] Multivariate modeling and analysis in drug discovery
    Arodz, Tomasz
    Dudek, Arkadiusz Z.
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2007, 3 (04) : 240 - 247
  • [36] Covariance Modeling for Multivariate Spatial Processes Based on Separable Approximations
    Erbisti, Rafael S.
    Fonseca, Thais C. O.
    Alves, Mariane B.
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, MAXENT 37, 2018, 239 : 243 - 252
  • [37] Prediction of particle pollution through spatio-temporal multivariate geostatistical analysis: spatial special issue
    De Iaco, S.
    Palma, M.
    Posa, D.
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2013, 97 (02) : 133 - 150
  • [38] Bayesian Spatial Multivariate Receptor Modeling for Multisite Multipollutant Data
    Park, Eun Sug
    Hopke, Philip K.
    KiM, Inyoung
    Tan, Shuman
    Spiegelman, Clifford H.
    TECHNOMETRICS, 2018, 60 (03) : 306 - 318
  • [39] Prediction of particle pollution through spatio-temporal multivariate geostatistical analysis: spatial special issue
    S. De Iaco
    M. Palma
    D. Posa
    AStA Advances in Statistical Analysis, 2013, 97 : 133 - 150
  • [40] MODELING NONSTATIONARY AND ASYMMETRIC MULTIVARIATE SPATIAL COVARIANCES VIA DEFORMATIONS
    Vu, Quan
    Zammit-Mangion, Andrew
    Cressie, Noel
    STATISTICA SINICA, 2022, 32 : 2071 - 2093