Modeling and prediction for multivariate spatial factor analysis

被引:18
|
作者
Christensen, WF
Amemiya, Y
机构
[1] Brigham Young Univ, Dept Stat, Provo, UT 84602 USA
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
关键词
geo-referenced data; latent variables; model building; kriging;
D O I
10.1016/S0378-3758(02)00173-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Factor analysis of multivariate spatial data is considered. A systematic approach for modeling the underlying structure of potentially irregularly spaced, geo-referenced vector observations is proposed. Statistical inference procedures for selecting the number of factors and for model building are discussed. We derive a condition under which a simple and practical inference procedure is valid without specifying the form of distributions and factor covariance functions. The multivariate prediction problem is also discussed, and a procedure combining the latent variable modeling and a measurement-error-free kriging technique is introduced. Simulation results and an example using agricultural data are presented. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:543 / 564
页数:22
相关论文
共 50 条
  • [1] A hierarchical approach to multivariate spatial modeling and prediction
    Royle, JA
    Berliner, LM
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 1999, 4 (01) : 29 - 56
  • [2] Clustered factor analysis for multivariate spatial data
    Jin, Yanxiu
    Wakayama, Tomoya
    Jiang, Renhe
    Sugasawa, Shonosuke
    SPATIAL STATISTICS, 2025, 66
  • [3] Multivariate spatial-temporal modeling and prediction of speciated fine particles
    Choi J.
    Reich B.J.
    Fuentes M.
    Davis J.M.
    Journal of Statistical Theory and Practice, 2009, 3 (2) : 407 - 418
  • [4] The spatial structure of socioeconomic disadvantage: a Bayesian multivariate spatial factor analysis
    Quick, Matthew
    Luan, Hui
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2021, 35 (01) : 63 - 83
  • [5] Spatial modeling of factor analysis scores
    Piairo, Helena
    Menezes, Raquel
    Sousa, Ines
    Figueira, Rui
    Sergio, Cecilia
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2014, 21 (23) : 13420 - 13433
  • [6] Nonparametric prediction of spatial multivariate data
    Dabo-Niang, Sophie
    Ternynck, Camille
    Yao, Anne-Francoise
    JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (02) : 428 - 458
  • [7] Indicator and Multivariate Geostatistics for Spatial Prediction
    Zhang Jingxiong
    Yao Na
    GEO-SPATIAL INFORMATION SCIENCE, 2008, 11 (04) : 243 - 246
  • [8] Flexible modeling of multivariate spatial extremes
    Gong, Yan
    Huser, Raphael
    SPATIAL STATISTICS, 2022, 52
  • [9] Nonstationary modeling for multivariate spatial processes
    Kleiber, William
    Nychka, Douglas
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 112 : 76 - 91
  • [10] Modeling and exploring multivariate spatial variation: A test procedure for isotropy of multivariate spatial data
    Jona-Lasinio, G
    JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 77 (02) : 295 - 317