Physics-informed Machine Learning for Modeling Turbulence in Supernovae

被引:6
|
作者
Karpov, Platon I. [1 ,2 ]
Huang, Chengkun [2 ]
Sitdikov, Iskandar [3 ]
Fryer, Chris L. [2 ]
Woosley, Stan [1 ]
Pilania, Ghanshyam [2 ]
机构
[1] Univ Calif, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA
[2] Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Provectus IT Inc, Palo Alto, CA 94301 USA
来源
ASTROPHYSICAL JOURNAL | 2022年 / 940卷 / 01期
关键词
SUBGRID-SCALE; COLLAPSE; SIMULATIONS;
D O I
10.3847/1538-4357/ac88cc
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Turbulence plays an important role in astrophysical phenomena, including core-collapse supernovae (CCSNe), but current simulations must rely on subgrid models, since direct numerical simulation is too expensive. Unfortunately, existing subgrid models are not sufficiently accurate. Recently, machine learning (ML) has shown an impressive predictive capability for calculating turbulence closure. We have developed a physics-informed convolutional neural network to preserve the realizability condition of the Reynolds stress that is necessary for accurate turbulent pressure prediction. The applicability of the ML subgrid model is tested here for magnetohydrodynamic turbulence in both the stationary and dynamic regimes. Our future goal is to utilize this ML methodology (available on GitHub) in the CCSN framework to investigate the effects of accurately modeled turbulence on the explosion of these stars.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Predicting glass structure by physics-informed machine learning
    Bodker, Mikkel L.
    Bauchy, Mathieu
    Du, Tao
    Mauro, John C.
    Smedskjaer, Morten M.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [32] Parsimony as the ultimate regularizer for physics-informed machine learning
    J. Nathan Kutz
    Steven L. Brunton
    Nonlinear Dynamics, 2022, 107 : 1801 - 1817
  • [33] Parsimony as the ultimate regularizer for physics-informed machine learning
    Kutz, J. Nathan
    Brunton, Steven L.
    NONLINEAR DYNAMICS, 2022, 107 (03) : 1801 - 1817
  • [34] Physics-Informed Machine Learning for Optical Modes in Composites
    Ghosh, Abantika
    Elhamod, Mohannad
    Bu, Jie
    Lee, Wei-Cheng
    Karpatne, Anuj
    Podolskiy, Viktor A.
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (11):
  • [35] Physics-Informed Extreme Learning Machine Lyapunov Functions
    Zhou, Ruikun
    Fitzsimmons, Maxwell
    Meng, Yiming
    Liu, Jun
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1763 - 1768
  • [36] Physics-informed machine learning for moving load problems
    Kapoor, Taniya
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    XII INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2023, 2024, 2647
  • [37] Neural Oscillators for Generalization of Physics-Informed Machine Learning
    Kapoor, Taniya
    Chandra, Abhishek
    Tartakovsky, Daniel M.
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 12, 2024, : 13059 - 13067
  • [38] Physics-informed machine learning for programmable photonic circuits
    Teofilovic, Isidora
    Zibar, Darko
    Da Ros, Francesco
    MACHINE LEARNING IN PHOTONICS, 2024, 13017
  • [39] Physics-Informed Machine Learning for metal additive manufacturing
    Farrag, Abdelrahman
    Yang, Yuxin
    Cao, Nieqing
    Won, Daehan
    Jin, Yu
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (01) : 171 - 185
  • [40] Predicting glass structure by physics-informed machine learning
    Mikkel L. Bødker
    Mathieu Bauchy
    Tao Du
    John C. Mauro
    Morten M. Smedskjaer
    npj Computational Materials, 8