Automatic Waterline Extraction of Tidal Flats from SAR Images Based on Deep Convolutional Neural Networks

被引:0
|
作者
Zhang, Shuangshang [1 ,2 ]
Xu, Qing [3 ]
Li, Xiaofeng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
[2] Chinese Acad Sci, Ctr Ocean Megasci, Qingdao, Peoples R China
[3] Ocean Univ China, Coll Informat Sci & Engn, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/PIERS55526.2022.9792855
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, we proposed an automatic waterline signature extraction method based on deep convolutional neural networks (DCNNs). Our objective is to provide a rapid and straightforward to use method that can tackle the waterline signature extraction from large-scale tidal flats in Sentinel-1 SAR images without re-training or manual interference. The statistical results show this DCNN-based method has appreciable accuracy for efficient extraction of waterline in SAR images even under complex imaging conditions (the mean precision and recall are 0.81 and 0.88, respectively), implying that this method is potential for rapid analysis of tidal flat topography evolution by using the waterline method.
引用
收藏
页码:273 / 277
页数:5
相关论文
共 50 条
  • [41] D-ATR for SAR Images Based on Deep Neural Networks
    Cui, Zongyong
    Tang, Cui
    Cao, Zongjie
    Liu, Nengyuan
    REMOTE SENSING, 2019, 11 (08)
  • [42] INSHORE SHIP DETECTION IN SAR IMAGES BASED ON DEEP NEURAL NETWORKS
    Liu, Lei
    Chen, Guowei
    Pan, Zongxu
    Lei, Bin
    An, Quanzhi
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 25 - 28
  • [43] Forest road extraction from orthophoto images by convolutional neural networks
    Caliskan, Erhan
    Sevim, Yusuf
    GEOCARTO INTERNATIONAL, 2022, 37 (26) : 11671 - 11685
  • [44] Automatic extraction of coastlines from SAR images
    Maras, H. Hakan
    SEA TECHNOLOGY, 2008, 49 (07) : 33 - +
  • [45] SHIP DETECTION BASED ON DEEP CONVOLUTIONAL NEURAL NETWORKS FOR POLSAR IMAGES
    Zhou, Feng
    Fan, Weiwei
    Sheng, Qiangqiang
    Tao, Mingliang
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 681 - 684
  • [46] Target Classification Using the Deep Convolutional Networks for SAR Images
    Chen, Sizhe
    Wang, Haipeng
    Xu, Feng
    Jin, Ya-Qiu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08): : 4806 - 4817
  • [47] Deep Convolutional Neural Networks for Fish Weight Prediction from Images
    Yang, Yunhan
    Xue, Bing
    Jesson, Linley
    Wylie, Matthew
    Zhang, Mengjie
    Wellenreuther, Maren
    PROCEEDINGS OF THE 2021 36TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2021,
  • [48] Automatic object extraction from images using deep neural networks and the level-set method
    Wu, Kan
    Yu, Yizhou
    IET IMAGE PROCESSING, 2018, 12 (07) : 1131 - 1141
  • [49] Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
    Yang, Xulei
    Zeng, Zeng
    Yi, Su
    IET COMPUTER VISION, 2017, 11 (08) : 643 - 649
  • [50] Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks
    Li, Yi-Chen
    Shen, Thau-Yun
    Chen, Chien-Cheng
    Chang, Wei-Ting
    Lee, Po-Yang
    Huang, Chih-Chung
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (05) : 1762 - 1772