Automatic Waterline Extraction of Tidal Flats from SAR Images Based on Deep Convolutional Neural Networks

被引:0
|
作者
Zhang, Shuangshang [1 ,2 ]
Xu, Qing [3 ]
Li, Xiaofeng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
[2] Chinese Acad Sci, Ctr Ocean Megasci, Qingdao, Peoples R China
[3] Ocean Univ China, Coll Informat Sci & Engn, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/PIERS55526.2022.9792855
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, we proposed an automatic waterline signature extraction method based on deep convolutional neural networks (DCNNs). Our objective is to provide a rapid and straightforward to use method that can tackle the waterline signature extraction from large-scale tidal flats in Sentinel-1 SAR images without re-training or manual interference. The statistical results show this DCNN-based method has appreciable accuracy for efficient extraction of waterline in SAR images even under complex imaging conditions (the mean precision and recall are 0.81 and 0.88, respectively), implying that this method is potential for rapid analysis of tidal flat topography evolution by using the waterline method.
引用
收藏
页码:273 / 277
页数:5
相关论文
共 50 条
  • [31] Deep Convolutional Neural Networks for SAR Patch Categorization
    Gleich, Dusan
    Planinsic, Peter
    Sipos, Danijel
    Malajner, Marko
    PROCEEDINGS OF 2017 INTERNATIONAL SYMPOSIUM ELMAR, 2017, : 267 - 270
  • [32] Automatic measurement of fish from images using convolutional neural networks
    Rocha W.S.
    da Fonseca T.F.C.
    Watanabe C.Y.V.
    da Costa Dória C.R.
    Sant’Anna I.R.A.
    Multimedia Tools and Applications, 2025, 84 (9) : 6327 - 6347
  • [33] Hyperspectral Remote Sensing Images Deep Feature Extraction Based on Mixed Feature and Convolutional Neural Networks
    Liu, Jing
    Yang, Zhe
    Liu, Yi
    Mu, Caihong
    REMOTE SENSING, 2021, 13 (13)
  • [34] Road Extraction Based on Improved Convolutional Neural Networks with Satellite Images
    He, Lei
    Peng, Bo
    Tang, Dan
    Li, Yuxia
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [36] Feature Extraction and Segmentation Processing of Images Based on Convolutional Neural Networks
    Nan, Shuping
    OPTICAL MEMORY AND NEURAL NETWORKS, 2021, 30 (01) : 67 - 73
  • [37] Automatic detection of marine oil spills from polarimetric SAR images using deep Convolutional neural network model
    Song, Wenyue
    Ma, Xiaoshuang
    Song, Wenbo
    ECOLOGICAL INDICATORS, 2024, 169
  • [38] AUTOMATIC ANATOMICAL CLASSIFICATION OF GASTROINTESTINAL ENDOSCOPIC IMAGES USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Takiyama, Hirotoshi
    Ozawa, Tsuyoshi
    Ishihara, Soichiro
    Fujishiro, Mitsuhiro
    Shichijo, Satoki
    Endo, Yuma
    Tada, Tomohiro
    GASTROINTESTINAL ENDOSCOPY, 2018, 87 (06) : AB239 - AB240
  • [39] Deep convolutional neural networks for automatic identification of epileptic seizures in infrared and depth images
    Achilles, F.
    Belagiannis, V.
    Tombari, F.
    Loesch, A. M.
    Cunha, J. P. S.
    Navab, N.
    Noachtar, S.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2015, 357 : E436 - E436
  • [40] Discriminative Feature Extraction from X-ray Images using Deep Convolutional Neural Networks
    Srinivas, M.
    Roy, Debaditya
    Mohan, C. Krishna
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 917 - 921