Rethinking CAM in Weakly-Supervised Semantic Segmentation

被引:1
|
作者
Song, Yuqi [1 ]
Li, Xiaojie [1 ]
Shi, Canghong [2 ]
Feng, Shihao [3 ]
Wang, Xin [4 ]
Luo, Yong [5 ]
Xi, Wu [1 ]
机构
[1] Chengdu Univ Informat Technol, Dept Comp Sci, Chengdu, Peoples R China
[2] Xihua Univ, Sch Comp & Software Engn, Chengdu, Peoples R China
[3] Univ Auckland, Dept Comp Sci, Auckland, New Zealand
[4] SUNY Buffalo, Buffalo, NY USA
[5] Sichuan Univ, West China Hosp, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Weakly supervised semantic segmentation; class activation map; ordinary classifier; plug-in;
D O I
10.1109/ACCESS.2022.3220679
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Weakly supervised semantic segmentation (WSSS) generally utilizes the Class Activation Map (CAM) to synthesize pseudo-labels. However, the current methods of obtaining CAM focus on salient features of a specific layer, resulting in highlighting the most discriminative regions and further leading to rough segmentation results for WSSS. In this paper, we rethink the potential of the ordinary classifier and find that if features of all the layers are applied, the classifier will obtain CAM with complete discriminative regions. Inspired by this, we propose Fully-CAM for WSSS, which can fully exploit the potential of the ordinary classifier and yield more accurate segmentation results. Precisely, Fully-CAM firstly weights feature with their corresponding gradients to yield CAMs of each layer, then fusing these layers' CAMs could generate an ultimate CAM with complete discriminative regions. Furthermore, Fully-CAM is encapsulated into a plug-in, which can be mounted on any trained ordinary classifier with convolution layer, and it exceeds its previous performance without extra training.
引用
收藏
页码:126440 / 126450
页数:11
相关论文
共 50 条
  • [41] Built-in Foreground/Background Prior for Weakly-Supervised Semantic Segmentation
    Saleh, Fatemehsadat
    Aliakbarian, Mohammad Sadegh
    Salzmann, Mathieu
    Petersson, Lars
    Gould, Stephen
    Alvarez, Jose M.
    COMPUTER VISION - ECCV 2016, PT VIII, 2016, 9912 : 413 - 432
  • [42] Weakly-Supervised Image Semantic Segmentation Based on Superpixel Region Merging
    Jiang, Quanchun
    Tawose, Olamide Timothy
    Pei, Songwen
    Chen, Xiaodong
    Jiang, Linhua
    Wang, Jiayao
    Zhao, Dongfang
    BIG DATA AND COGNITIVE COMPUTING, 2019, 3 (02) : 1 - 20
  • [43] Partial Image Texture Translation Using Weakly-Supervised Semantic Segmentation
    Benitez-Garcia, Gibran
    Shimoda, Wataru
    Matsuo, Shin
    Yanai, Keiji
    NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE, JSAI-ISAI 2019, 2020, 12331 : 387 - 401
  • [44] GraphNet: Learning Image Pseudo Annotations for Weakly-Supervised Semantic Segmentation
    Pu, Mengyang
    Huang, Yaping
    Guan, Qingji
    Zou, Qi
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 483 - 491
  • [45] A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains
    Chan, Lyndon
    Hosseini, Mahdi S.
    Plataniotis, Konstantinos N.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (02) : 361 - 384
  • [46] Coupling Global Context and Local Contents for Weakly-Supervised Semantic Segmentation
    Wang, Chunyan
    Zhang, Dong
    Zhang, Liyan
    Tang, Jinhui
    arXiv, 2023,
  • [47] DICTIONARY LEARNING BASED SUPERPIXELS CLUSTERING FOR WEAKLY-SUPERVISED SEMANTIC SEGMENTATION
    Ying, Peng
    Liu, Jing
    Lu, Hanqing
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4258 - 4262
  • [48] Co-attention dictionary network for weakly-supervised semantic segmentation
    Wan, Weitao
    Chen, Jiansheng
    Yang, Ming-Hsuan
    Ma, Huimin
    NEUROCOMPUTING, 2022, 486 : 272 - 285
  • [49] HAR ENHANCED WEAKLY-SUPERVISED SEMANTIC SEGMENTATION COUPLED WITH ADVERSARIAL LEARNING
    Ma, Leiyuan
    Liu, Ziyi
    Zheng, Nanning
    Wang, Jianji
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1845 - 1849
  • [50] Weakly-Supervised Semantic Segmentation with Visual Words Learning and Hybrid Pooling
    Ru, Lixiang
    Du, Bo
    Zhan, Yibing
    Wu, Chen
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (04) : 1127 - 1144