Rethinking CAM in Weakly-Supervised Semantic Segmentation

被引:1
|
作者
Song, Yuqi [1 ]
Li, Xiaojie [1 ]
Shi, Canghong [2 ]
Feng, Shihao [3 ]
Wang, Xin [4 ]
Luo, Yong [5 ]
Xi, Wu [1 ]
机构
[1] Chengdu Univ Informat Technol, Dept Comp Sci, Chengdu, Peoples R China
[2] Xihua Univ, Sch Comp & Software Engn, Chengdu, Peoples R China
[3] Univ Auckland, Dept Comp Sci, Auckland, New Zealand
[4] SUNY Buffalo, Buffalo, NY USA
[5] Sichuan Univ, West China Hosp, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Weakly supervised semantic segmentation; class activation map; ordinary classifier; plug-in;
D O I
10.1109/ACCESS.2022.3220679
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Weakly supervised semantic segmentation (WSSS) generally utilizes the Class Activation Map (CAM) to synthesize pseudo-labels. However, the current methods of obtaining CAM focus on salient features of a specific layer, resulting in highlighting the most discriminative regions and further leading to rough segmentation results for WSSS. In this paper, we rethink the potential of the ordinary classifier and find that if features of all the layers are applied, the classifier will obtain CAM with complete discriminative regions. Inspired by this, we propose Fully-CAM for WSSS, which can fully exploit the potential of the ordinary classifier and yield more accurate segmentation results. Precisely, Fully-CAM firstly weights feature with their corresponding gradients to yield CAMs of each layer, then fusing these layers' CAMs could generate an ultimate CAM with complete discriminative regions. Furthermore, Fully-CAM is encapsulated into a plug-in, which can be mounted on any trained ordinary classifier with convolution layer, and it exceeds its previous performance without extra training.
引用
收藏
页码:126440 / 126450
页数:11
相关论文
共 50 条
  • [21] Saliency Background Guided Network for Weakly-Supervised Semantic Segmentation
    Bai X.
    Li W.
    Wang W.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (09): : 824 - 835
  • [22] Weakly-supervised semantic segmentation with saliency and incremental supervision updating
    Luo, Wenfeng
    Yang, Meng
    Zheng, Weishi
    PATTERN RECOGNITION, 2021, 115
  • [23] Exclusive Constrained Discriminative Learning for Weakly-Supervised Semantic Segmentation
    Ying, Peng
    Liu, Jing
    Lu, Hanqing
    Ma, Songde
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1251 - 1254
  • [24] WeClick: Weakly-Supervised Video Semantic Segmentation with Click Annotations
    Liu, Peidong
    He, Zibin
    Yan, Xiyu
    Jiang, Yong
    Xia, Shu-Tao
    Zheng, Feng
    Hu, Maowei
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2995 - 3004
  • [25] Weakly-supervised Semantic Segmentation in Cityscape via Hyperspectral Image
    Huang, Yuxing
    Shen, Qiu
    Fu, Ying
    You, Shaodi
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1117 - 1126
  • [26] Weakly-supervised Incremental learning for Semantic segmentation with Class Hierarchy
    Kim, Hyoseo
    Choe, Junsuk
    PATTERN RECOGNITION LETTERS, 2024, 182 : 31 - 38
  • [27] Global Consistency Enhancement Network for Weakly-Supervised Semantic Segmentation
    Jiang, Le
    Yang, Xinhao
    Ma, Liyan
    Li, Zhenglin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 53 - 65
  • [28] IMAGE AUGMENTATION WITH CONTROLLED DIFFUSION FOR WEAKLY-SUPERVISED SEMANTIC SEGMENTATION
    Wu, Wangyu
    Dai, Tianhong
    Huang, Xiaowei
    Ma, Fei
    Xiao, Jimin
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6175 - 6179
  • [29] Pseudo-mask Matters in Weakly-supervised Semantic Segmentation
    Li, Yi
    Kuang, Zhanghui
    Liu, Liyang
    Chen, Yimin
    Zhang, Wayne
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6944 - 6953
  • [30] Weakly-Supervised Semantic Segmentation via Self-training
    Cheng, Hao
    Gu, Chaochen
    Wu, Kaijie
    2020 4TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND ARTIFICIAL INTELLIGENCE (CCEAI 2020), 2020, 1487