Galois subfields of inertially split division algebras

被引:3
|
作者
Hanke, Timo [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math D, D-52062 Aachen, Germany
关键词
Noncommutative valuation; Division algebra; Maximal subfield; Galois subfield; Residue field; Crossed product; Noncrossed product; Generic construction; NONCROSSED PRODUCTS; CROSSED-PRODUCTS;
D O I
10.1016/j.jalgebra.2011.08.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a valued division algebra, finite-dimensional over its center F. Assume D has an unramified splitting field. The paper shows that if D contains a maximal subfield which is Galois over F (i.e. D is a crossed product) then the residue division algebra (D) over bar contains a maximal subfield which is Galois over the residue field (F) over bar. This theorem captures an essential argument of previously known noncrossed product proofs in the more general language of noncommutative valuations. The result is particularly useful in connection with explicit constructions. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 151
页数:5
相关论文
共 50 条
  • [1] GALOIS SUBFIELDS OF TAME DIVISION ALGEBRAS
    Hanke, Timo
    Neftin, Danny
    Wadsworth, Adrian
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 211 (01) : 367 - 389
  • [2] Galois subfields of tame division algebras
    Timo Hanke
    Danny Neftin
    Adrian Wadsworth
    Israel Journal of Mathematics, 2016, 211 : 367 - 389
  • [3] Decomposition of involutions on inertially split division algebras
    P.J. Morandi
    B.A. Sethuraman
    Mathematische Zeitschrift, 2000, 235 : 195 - 212
  • [4] Decomposition of involutions on inertially split division algebras
    Morandi, PJ
    Sethuraman, BA
    MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (01) : 195 - 212
  • [5] Division algebras with PSL(2, q)-Galois maximal subfields
    Allman, ES
    Schacher, MM
    JOURNAL OF ALGEBRA, 2001, 240 (02) : 808 - 821
  • [6] Division algebras with common subfields
    Daniel Krashen
    Eliyahu Matzri
    Andrei Rapinchuk
    Louis Rowen
    David Saltman
    manuscripta mathematica, 2022, 169 : 209 - 249
  • [7] PATCHING SUBFIELDS OF DIVISION ALGEBRAS
    Harbater, David
    Hartmann, Julia
    Krashen, Daniel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (06) : 3335 - 3349
  • [8] Division algebras with common subfields
    Krashen, Daniel
    Matzri, Eliyahu
    Rapinchuk, Andrei
    Rowen, Louis
    Saltman, David
    MANUSCRIPTA MATHEMATICA, 2022, 169 (1-2) : 209 - 249
  • [9] Division algebras with the same maximal subfields
    Chernousov, V. I.
    Rapinchuk, A. S.
    Rapinchuk, I. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2015, 70 (01) : 83 - 112
  • [10] DIVISION-ALGEBRAS WITH NO COMMON SUBFIELDS
    JACOB, B
    WADSWORTH, AR
    ISRAEL JOURNAL OF MATHEMATICS, 1993, 83 (03) : 353 - 360