Decomposition of involutions on inertially split division algebras

被引:0
|
作者
Morandi, PJ [1 ]
Sethuraman, BA
机构
[1] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
[2] Calif State Univ Northridge, Dept Math, Northridge, CA 91330 USA
关键词
Tensor Product; Division Algebra; Simple Algebra; Central Simple Algebra; Central Division;
D O I
10.1007/s002090000131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a Henselian valued field with char((F)over bar) not equal 2, and let S be an inertially split F-central division algebra with involution sigma* that is trivial on an inertial lift in S of the field Z((S)over bar). We prove necessary and sufficient conditions for S to contain a sigma*-stable quaternion F-subalgebra, and for (S, sigma*) to decompose into a tensor product of quaternion algebras. These conditions are in terms of decomposability of an associated residue central simple algebra (I)over bar that arises from a Brauer roup decomposition of S.
引用
收藏
页码:195 / 212
页数:18
相关论文
共 50 条
  • [1] Decomposition of involutions on inertially split division algebras
    P.J. Morandi
    B.A. Sethuraman
    Mathematische Zeitschrift, 2000, 235 : 195 - 212
  • [2] Galois subfields of inertially split division algebras
    Hanke, Timo
    JOURNAL OF ALGEBRA, 2011, 346 (01) : 147 - 151
  • [3] INVOLUTIONS OF QUASI-DIVISION ALGEBRAS
    SWEET, L
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1975, 17 (05): : 723 - 725
  • [4] Homomorphisms and involutions of unramified henselian division algebras
    Tikhonov S.V.
    Yanchevskii V.I.
    Journal of Mathematical Sciences, 2015, 209 (4) : 657 - 664
  • [5] DISCRIMINANTS OF INVOLUTIONS ON HENSELIAN DIVISION-ALGEBRAS
    CHACRON, M
    DHERTE, H
    TIGNOL, JP
    WADSWORTH, AR
    YANCHEVSKII, VI
    PACIFIC JOURNAL OF MATHEMATICS, 1995, 167 (01) : 49 - 79
  • [6] A QUESTION ON THE DISCRIMINANTS OF INVOLUTIONS OF CENTRAL DIVISION-ALGEBRAS
    PARIMALA, R
    SRIDHARAN, R
    SURESH, V
    MATHEMATISCHE ANNALEN, 1993, 297 (04) : 575 - 580
  • [7] Homogeneous involutions on graded division algebras and their polynomial identities
    Yasumura, Felipe Yukihide
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (09)
  • [8] STRUCTURE OF RAMIFIED DISCRETELY VALUED HENSELIAN DIVISION ALGEBRAS WITH INVOLUTIONS
    Yanchevskii, Vyacheslav L.
    Ryzhkov, Alexander A.
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2018, 62 (01): : 7 - 12
  • [9] CLASSIFICATION OF RAMIFIED DISCRETELY VALUED HENSELIAN DIVISION ALGEBRAS WITH INVOLUTIONS
    Yanchevskii, Vyacheslav, I
    Ryzhkov, Aleksander A.
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2018, 62 (02): : 135 - 139
  • [10] Classification of involutions on graded-division simple real algebras
    Bahturin, Yuri
    Kochetov, Mikhail
    Rodrigo-Escudero, Adrian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 546 : 1 - 36