Atom probe tomography of isoferroplatinum

被引:12
|
作者
Parman, Stephen W. [1 ]
Diercks, David R. [2 ]
Gorman, Brian P. [2 ]
Cooper, Reid F. [1 ]
机构
[1] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA
[2] Colorado Sch Mines, Colorado Ctr Adv Ceram, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
Atom probe tomography; isoferroplatinum; platinum group alloy; precipitate; order-disorder; core-shell; PLATINUM-GROUP MINERALS; GROUP-ELEMENT ALLOYS; PGE-MINERALIZATION; OPHIOLITE COMPLEX; PT-OS; OSMIUM; ISOTOPE; SYSTEMATICS; PERIDOTITE; MOUNTAINS;
D O I
10.2138/am-2015-4998
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Here we apply the relatively new analytical technique of atom probe tomography (APT) to a naturally occurring isoferroplatinum grain (Pt3Fe) from northern California to constrain its origin and the nanoscale distribution of trace elements within the grain. Each analysis detected the positions of 10 million atoms in three dimensions with sub-nanometer spatial resolution. The (111) atomic planes are clearly resolved and their orientation was confirmed by electron backscatter diffraction (EBSD). The elemental concentrations of all elements (Pt, Fe, Ir, Ni, Rh, Ru, and Cu) determined from the APT mass/charge spectra are within 2 standard deviations of electron microprobe analysis (EMPA) of the grain. The isotopic abundances determined by APT matches NIST standard compositions over a wide range of concentrations, down to 100 ppmw. Nanoscale areas free of minor and trace elements are present throughout the sample. These could be due to the random distribution of atoms. Alternatively, the Pt-Fe phase diagram indicates that order-disorder precipitates of an L12 structure could have formed as the isoferroplatinum cooled from magmatic temperatures (Nose et al. 2003). The trace element free areas could be such precipitates, which would support a high-temperature igneous origin for the isoferroplatinum, rather than formation during low-temperature serpentinization. The results highlight the unique capabilities of APT and the potential utility of knowing the location and identity of atoms in nanometric volumes.
引用
收藏
页码:852 / 860
页数:9
相关论文
共 50 条
  • [1] Atom probe tomography
    Miller, M. K.
    Forbes, R. G.
    [J]. MATERIALS CHARACTERIZATION, 2009, 60 (06) : 461 - 469
  • [2] Atom probe tomography
    Kareh, Kristina Maria
    [J]. NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [3] Atom probe tomography
    [J]. Nature Reviews Methods Primers, 1
  • [4] Atom Probe Tomography
    Felfer, P.
    Stephenson, L. T.
    Li, T.
    [J]. PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2018, 55 (08): : 515 - 526
  • [5] Atom Probe Tomography
    Shea, John J.
    [J]. IEEE ELECTRICAL INSULATION MAGAZINE, 2017, 33 (04) : 71 - 71
  • [6] Atom probe tomography today
    Cerezo, Alfred
    Clifton, Peter H.
    Galtrey, Mark J.
    Humphreys, Colin J.
    Kelly, Thomas F.
    Larson, David J.
    Lozano-Perez, Sergio
    Marquis, Emmanuelle A.
    Oliver, Rachel A.
    Sha, Gang
    Thompson, Keith
    Zandbergen, Mathijs
    Alvis, Roger L.
    [J]. MATERIALS TODAY, 2007, 10 (12) : 36 - 42
  • [7] Atom probe tomography of nanostructures
    Gnaser, Hubert
    [J]. SURFACE AND INTERFACE ANALYSIS, 2014, 46 : 383 - 388
  • [8] Atom Probe Tomography of Nanowires
    Jeon, Nari
    Lauhon, Lincoln J.
    [J]. SEMICONDUCTOR NANOWIRES I: GROWTH AND THEORY, 2015, 93 : 249 - 278
  • [9] Atom Probe Tomography 2012
    Kelly, Thomas F.
    Larson, David J.
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 42, 2012, 42 : 1 - 31
  • [10] Atom probe tomography in nanoelectronics
    Blavette, Didier
    Duguay, Sebastien
    [J]. EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2014, 68 (01):