Amending Maxwell's Equations for Real and Complex Gauge Groups in Non-Abelian Form

被引:0
|
作者
Rauscher, Elizabeth A.
Amoroso, Richard L.
机构
来源
SEARCH FOR FUNDAMENTAL THEORY | 2010年 / 1316卷
关键词
BELL INEQUALITIES;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have analyzed, calculated and extended the modification of Maxwell's equations in a complex Minkowski metric, M(4) in a C(2) space using the SU(2) gauge, SL(2,c) and other gauge groups, such as SU(n) for n > 2 expanding the U(1) gauge theories of Weyl. This work yields additional predictions beyond the electroweak unification scheme. Some of these are: 1) modified gauge invariant conditions, 2) short range non-Abelian force terms and Abelian long range force terms in Maxwell's equations, 3) finite but small rest of the photon, and 4) a magnetic monopole like term and 5) longitudinal as well as transverse magnetic and electromagnetic field components in a complex Minkowski metric M(4) in a C(4) space.
引用
收藏
页码:180 / 184
页数:5
相关论文
共 50 条
  • [41] Non-Abelian tensor gauge fields
    George Savvidy
    Proceedings of the Steklov Institute of Mathematics, 2011, 272 : 201 - 215
  • [42] DUALITY TRANSFORMATIONS OF ABELIAN AND NON-ABELIAN GAUGE FIELDS
    DESER, S
    TEITELBOIM, C
    PHYSICAL REVIEW D, 1976, 13 (06): : 1592 - 1597
  • [43] Non-Abelian gauge theories, prepotentials, and Abelian differentials
    Marshakov, A. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 159 (02) : 598 - 617
  • [44] Non-abelian finite gauge theories
    Hanany, A
    He, YH
    JOURNAL OF HIGH ENERGY PHYSICS, 1999, (02):
  • [45] QUANTIZATION OF NON-ABELIAN GAUGE THEORIES
    GRIBOV, VN
    NUCLEAR PHYSICS B, 1978, 139 (1-2) : 1 - 19
  • [46] Non-Abelian gauge field in optics
    Yan, Qiuchen
    Wang, Zhihao
    Wang, Dongyi
    Ma, Rui
    Lu, Cuicui
    Ma, Guancong
    Hu, Xiaoyong
    Gong, Qihuang
    ADVANCES IN OPTICS AND PHOTONICS, 2023, 15 (04) : 907 - 976
  • [47] Weyl Non-Abelian Gauge Field
    Modern Physics Letter A, 10 (03):
  • [48] Non-Abelian tensor gauge fields
    Savvidy, George
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 272 (01) : 201 - 215
  • [49] Non-Abelian gauge field inflation
    Maleknejad, A.
    Sheikh-Jabbari, M. M.
    PHYSICAL REVIEW D, 2011, 84 (04)
  • [50] Octonionic Non-Abelian Gauge Theory
    Chanyal, B. C.
    Bisht, P. S.
    Negi, O. P. S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (10) : 3522 - 3533