Amending Maxwell's Equations for Real and Complex Gauge Groups in Non-Abelian Form

被引:0
|
作者
Rauscher, Elizabeth A.
Amoroso, Richard L.
机构
来源
SEARCH FOR FUNDAMENTAL THEORY | 2010年 / 1316卷
关键词
BELL INEQUALITIES;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have analyzed, calculated and extended the modification of Maxwell's equations in a complex Minkowski metric, M(4) in a C(2) space using the SU(2) gauge, SL(2,c) and other gauge groups, such as SU(n) for n > 2 expanding the U(1) gauge theories of Weyl. This work yields additional predictions beyond the electroweak unification scheme. Some of these are: 1) modified gauge invariant conditions, 2) short range non-Abelian force terms and Abelian long range force terms in Maxwell's equations, 3) finite but small rest of the photon, and 4) a magnetic monopole like term and 5) longitudinal as well as transverse magnetic and electromagnetic field components in a complex Minkowski metric M(4) in a C(4) space.
引用
收藏
页码:180 / 184
页数:5
相关论文
共 50 条
  • [31] Weyl Non-Abelian Gauge Field
    Barbashov, B. M.
    Pestov, A. B.
    Current Science, 1994, 67
  • [32] Non-Abelian gauge theories, prepotentials, and Abelian differentials
    A. V. Marshakov
    Theoretical and Mathematical Physics, 2009, 159 : 598 - 617
  • [33] Non-Abelian gauge field optics
    Chen, Yuntian
    Zhang, Ruo-Yang
    Xiong, Zhongfei
    Hang, Zhi Hong
    Li, Jensen
    Shen, Jian Qi
    Chan, C. T.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [34] Quantization of non-Abelian gauge fields
    Slavnov, A. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 289 (01) : 286 - 290
  • [35] RENORMALIZATION IN NON-ABELIAN GAUGE THEORIES
    KALLOSH, R
    NUCLEAR PHYSICS B, 1974, B 78 (02) : 293 - 312
  • [36] Quantization of non-Abelian gauge fields
    A. A. Slavnov
    Proceedings of the Steklov Institute of Mathematics, 2015, 289 : 286 - 290
  • [37] Non-Abelian gauge field optics
    Yuntian Chen
    Ruo-Yang Zhang
    Zhongfei Xiong
    Zhi Hong Hang
    Jensen Li
    Jian Qi Shen
    C. T. Chan
    Nature Communications, 10
  • [38] NON-ABELIAN GAUGE THEORY IN A NON-LINEAR GAUGE
    RIGHI, R
    VENTURI, G
    ZAMIRALOV, V
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1978, 47 (04): : 518 - 528
  • [39] Octonionic Non-Abelian Gauge Theory
    B. C. Chanyal
    P. S. Bisht
    O. P. S. Negi
    International Journal of Theoretical Physics, 2013, 52 : 3522 - 3533
  • [40] GLOBAL GAUGE IN A NON-ABELIAN THEORY
    SOLOVEV, MA
    JETP LETTERS, 1983, 38 (08) : 504 - 507