Almost perfect powers in consecutive integers

被引:12
|
作者
Hanrot, G
Saradha, N
Shorey, TN
机构
[1] INRIA Lorraine, Projet PolKA, F-54602 Villers Les Nancy, France
[2] Tata Inst Fundamental Res, Sch Math, Mumbai 400005, India
关键词
D O I
10.4064/aa99-1-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:13 / 25
页数:13
相关论文
共 50 条
  • [21] Perfect powers from products of consecutive terms in arithmetic progression
    Gyory, K.
    Hajdu, L.
    Pinter, A.
    [J]. COMPOSITIO MATHEMATICA, 2009, 145 (04) : 845 - 864
  • [22] Two classical formulas for the sum of powers of consecutive integers via complex analysis
    Barman K.
    Chakraborty B.
    Mortini R.
    [J]. Complex Analysis and its Synergies, 2024, 10 (1)
  • [23] GENERALIZED BINOMIAL CONVOLUTION OF THE mth POWERS OF THE CONSECUTIVE INTEGERS WITH THE GENERAL FIBONACCI SEQUENCE
    Kilic, Emrah
    Akkus, Ilker
    Omur, Nese
    Ulutas, Yucel T.
    [J]. DEMONSTRATIO MATHEMATICA, 2016, 49 (04) : 379 - 385
  • [24] CONSECUTIVE DIVISORS OF CONSECUTIVE INTEGERS
    FORD, GG
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (10): : 1132 - &
  • [25] On the number of integers which form perfect powers in the way of x(y12
    Wen, Tingting
    [J]. AIMS MATHEMATICS, 2024, 9 (04): : 8732 - 8748
  • [26] On a variant of Pillai problem: integers as difference between generalized Pell numbers and perfect powers
    Garcia, Jonathan
    Gomez, Carlos A.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [27] On a variant of Pillai problem: integers as difference between generalized Pell numbers and perfect powers
    Jonathan García
    Carlos A. Gómez
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [28] COPRIME INTEGERS IN A SET OF CONSECUTIVE INTEGERS
    MARCUS, D
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (10): : 1144 - &
  • [29] SUM OF POWERS OF INTEGERS
    BRYANT, P
    ONEIL, PE
    [J]. AMERICAN STATISTICIAN, 1974, 28 (01): : 37 - 38
  • [30] SUMS OF POWERS OF INTEGERS
    KLAMKIN, MS
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (08): : 946 - &