A new type of nodal solutions to singularly perturbed elliptic equations with supercritical growth

被引:4
|
作者
Liu, Zhisu [1 ]
Wei, Juncheng [2 ]
Zhang, Jianjun [3 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Hubei, Peoples R China
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Nodal solution; Orthogonal sphere concentration; Variational method; SIGN-CHANGING SOLUTIONS; LEAST-ENERGY SOLUTIONS; EXISTENCE; SYMMETRY; DIRICHLET; PROFILE; DOMAINS; SPHERES;
D O I
10.1016/j.jde.2022.08.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we aim to investigate the following class of singularly perturbed elliptic problem {-epsilon(2 )delta u + |x|(eta)u = |x|(eta)f (u) in A,u=0 on & part;A, where epsilon > 0, eta is an element of R, A = {x is an element of R-2N : 0 < a < |x| < b}, N >= 2 and f is a nonlinearity of C-1 class with supercritical growth. By a reduction argument, we show that there exists a nodal solution u(epsilon)( )with exactly two positive and two negative peaks, which concentrate on two different orthogonal spheres of dimension N - 1 as epsilon -> 0. In particular, we establish different concentration phenomena of four peaks when the parameter eta > 2, eta = 2 and eta < 2. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:509 / 554
页数:46
相关论文
共 50 条