共 50 条
A new type of nodal solutions to singularly perturbed elliptic equations with supercritical growth
被引:4
|作者:
Liu, Zhisu
[1
]
Wei, Juncheng
[2
]
Zhang, Jianjun
[3
]
机构:
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Hubei, Peoples R China
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
基金:
加拿大自然科学与工程研究理事会;
关键词:
Nodal solution;
Orthogonal sphere concentration;
Variational method;
SIGN-CHANGING SOLUTIONS;
LEAST-ENERGY SOLUTIONS;
EXISTENCE;
SYMMETRY;
DIRICHLET;
PROFILE;
DOMAINS;
SPHERES;
D O I:
10.1016/j.jde.2022.08.028
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we aim to investigate the following class of singularly perturbed elliptic problem {-epsilon(2 )delta u + |x|(eta)u = |x|(eta)f (u) in A,u=0 on & part;A, where epsilon > 0, eta is an element of R, A = {x is an element of R-2N : 0 < a < |x| < b}, N >= 2 and f is a nonlinearity of C-1 class with supercritical growth. By a reduction argument, we show that there exists a nodal solution u(epsilon)( )with exactly two positive and two negative peaks, which concentrate on two different orthogonal spheres of dimension N - 1 as epsilon -> 0. In particular, we establish different concentration phenomena of four peaks when the parameter eta > 2, eta = 2 and eta < 2. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:509 / 554
页数:46
相关论文