Sphere packing with a geometric based compression algorithm

被引:94
|
作者
Han, K [1 ]
Feng, YT [1 ]
Owen, DRJ [1 ]
机构
[1] Univ Coll Swansea, Sch Engn, Civil & Computat Engn Ctr, Swansea SA2 8PP, W Glam, Wales
基金
英国工程与自然科学研究理事会;
关键词
sphere packing; compression; shaking; discrete elements; contact search;
D O I
10.1016/j.powtec.2005.04.055
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
An efficient algorithm for the random packing of spheres can significantly save the cost of the preparation of an initial configuration often required in discrete element simulations. It is not trivial to generate such random packing at a large scale, particularly when spheres of various sizes and geometric domains of different shapes are present. Motivated by the idea of compression complemented by an efficient physical process to increase packing density, shaking, a new approach, termed compression algorithm, is proposed in this work to randomly fill any arbitrary polyhedral or cylindrical domains with spheres of various sizes. The algorithm features both simplicity and high efficiency. Tests show that it takes 181 s on a 1.4-GHz PC to complete the filling of a cylindrical domain with a total number of 26,787 spheres, achieving a packing density of 52.89%. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 50 条
  • [41] SPHERE PACKING AND CRYSTALLOGRAPHIC GROUPS
    MAHONY, LM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (07): : A706 - A706
  • [42] Packing of incongruent circles on the sphere
    Florian, A
    MONATSHEFTE FUR MATHEMATIK, 2001, 133 (02): : 111 - 129
  • [43] THE OPTIMAL PACKING OF CIRCLES ON A SPHERE
    CLARE, BW
    KEPERT, DL
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1991, 6 (04) : 325 - 349
  • [44] Online circle and sphere packing
    Lintzmayer, Carla Negri
    Miyazawa, Flavio Keidi
    Xavier, Eduardo Candido
    THEORETICAL COMPUTER SCIENCE, 2019, 776 : 75 - 94
  • [45] Stable quasicrystalline sphere packing
    Natl. Inst. of Std. and Technology, Ceramics Division, 100 Bureau Drive Stop 8520, Gaithersburg, MD 20899-8520, United States
    不详
    不详
    Philos Mag Lett, 7 (441-448):
  • [46] Multiple packing of the Euclidean sphere
    Institute for Information Transmission Problems, Russian Academy of Sciences, 101447, Moscow, Russia
    IEEE Trans. Inf. Theory, 4 (1334-1337):
  • [47] Packing of Incongruent Circles on the Sphere
    August Florian
    Monatshefte für Mathematik, 2001, 133 : 111 - 129
  • [48] Sphere packing and quantum gravity
    Hartman, Thomas
    Mazac, Dalimil
    Rastelli, Leonardo
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (12)
  • [49] Stable quasicrystalline sphere packing
    Cockayne, E
    Mihalkovic, M
    PHILOSOPHICAL MAGAZINE LETTERS, 1999, 79 (07) : 441 - 448
  • [50] Test data compression based on geometric shapes
    El-Maleh, Aiman
    al Zahir, Saif
    Khan, Esam
    COMPUTERS & ELECTRICAL ENGINEERING, 2011, 37 (03) : 376 - 391