A twist of the Gauss circle problem by holomorphic cusp forms

被引:3
|
作者
Acharya, Ratnadeep [1 ]
机构
[1] RKMVERI, Belur Math 711202, Howrah, India
关键词
D O I
10.1007/s40993-021-00299-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a holomorphic cusp form of even weight k for the group Gamma(0)(4N) with N is an element of N. We prove that S-f(X) := Sigma(k,l is an element of Z)Sigma(k2+l2 <= X)lambda(f)(k(2) + l(2)) <<(k,N,epsilon) X1/2+epsilon for any epsilon > 0, where lambda(f)(n) denotes the normalized n-th Fourier coefficients of f.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Moments of S(t, f) Associated with Holomorphic Hecke Cusp Forms
    Liu, Sheng-Chi
    Shim, Jemin
    TAIWANESE JOURNAL OF MATHEMATICS, 2022, 26 (03): : 463 - 482
  • [42] MEAN-VALUE OF DIRICHLET SERIES ASSOCIATED WITH HOLOMORPHIC CUSP FORMS
    FARMER, DW
    JOURNAL OF NUMBER THEORY, 1994, 49 (02) : 209 - 245
  • [43] A RELATION BETWEEN FOURIER COEFFICIENTS OF HOLOMORPHIC CUSP FORMS AND EXPONENTIAL SUMS
    Ernvall-Hytonen, Anne-Maria
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 86 (100): : 97 - 105
  • [44] An analogue of the Mellin transform for weakly holomorphic cusp forms and a converse theorem
    Imamoglu, O.
    Martin, Y.
    Toth, A.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (12) : 3731 - 3744
  • [46] The Laplace transform of the second moment in the Gauss circle problem
    Hulse, Thomas A.
    Kuan, Chan Ieong
    Lowry-Duda, David
    Walker, Alexander
    ALGEBRA & NUMBER THEORY, 2021, 15 (01) : 1 - 27
  • [47] An additive problem in the Fourier coefficients of cusp forms
    Gergely Harcos
    Mathematische Annalen, 2003, 326 : 347 - 365
  • [48] A generalised Gauss circle problem and integrated density of states
    Lagace, Jean
    Parnovski, Leonid
    JOURNAL OF SPECTRAL THEORY, 2016, 6 (04) : 859 - 879
  • [49] The Circle Problem of Gauss and the Divisor Problem of Dirichlet-Still Unsolved
    Berndt, Bruce C.
    Kim, Sun
    Zaharescu, Alexandru
    AMERICAN MATHEMATICAL MONTHLY, 2018, 125 (02): : 99 - 114
  • [50] On the second moment of L-series of holomorphic cusp forms on the critical line
    V. A. Bykovskii
    D. A. Frolenkov
    Doklady Mathematics, 2015, 92 : 417 - 420