Memristor modeling: challenges in theories, simulations, and device variability

被引:108
|
作者
Gao, Lili [1 ,5 ]
Ren, Qingying [2 ,3 ]
Sun, Jiawei [4 ]
Han, Su-Ting [1 ]
Zhou, Ye [5 ]
机构
[1] Shenzhen Univ, Inst Microscale Optoelect, Shenzhen 518060, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Microelect, Nanjing, Peoples R China
[4] Suzhou Univ Sci & Technol, Coll Elect & Informat Engn, Suzhou, Peoples R China
[5] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
RANDOM-ACCESS MEMORY; RESISTIVE-SWITCHING MEMORY; PHASE-CHANGE MATERIALS; AB-INITIO; CONDUCTIVE FILAMENTS; 2ND-ORDER MEMRISTOR; COMPACT MODEL; SPICE MODEL; PART I; RESISTANCE;
D O I
10.1039/d1tc04201g
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article presents a review of the current development and challenges in memristor modeling. We review the mechanisms of memristive devices based on various classifications and survey the progress of memristive models and simulations. Besides the classical theoretical models, different modeling architectures are compared, including first-principles, modular dynamics and finite element tools such as COMSOL and MATLAB. The challenges and strategies for memristors with non-ideal mechanisms, including large parameter variations, modeling algorithms and simulation roadblocks are also discussed.
引用
收藏
页码:16859 / 16884
页数:26
相关论文
共 50 条
  • [21] Statistical modeling of device characteristics with systematic variability
    Okada, K
    Onodera, H
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2001, E84A (02) : 529 - 536
  • [22] A Voltage-driven Window Function Concept for Behavioral Memristor Device Modeling
    Fernandez, Carlos
    Ortiz, Javier
    Vourkas, Ioannis
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [23] Variability Modeling of Service Robots: Experiences and Challenges
    Garcia, Sergio
    Struber, Daniel
    Brugali, Davide
    Di Fava, Alessandro
    Schillinger, Philipp
    Pelliccione, Patrizio
    Berger, Thorsten
    PROCEEDINGS OF THE 13TH INTERNATIONAL WORKSHOP ON VARIABILITY MODELLING OF SOFTWARE-INTENSIVE SYSTEMS (VAMOS '19), 2019,
  • [24] Integrator Device With a Memristor Element
    Kirilov, Stoyan
    Mladenov, Valeri
    2018 7TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2018,
  • [25] From MEMRISTOR to MEMImpedance device
    Wakrim, T.
    Vallee, C.
    Gonon, P.
    Mannequin, C.
    Sylvestre, A.
    APPLIED PHYSICS LETTERS, 2016, 108 (05)
  • [26] Modeling Intradriver Steering Variability Based on Sensorimotor Control Theories
    Kolekar, Sarvesh
    Mugge, Winfred
    Abbink, David
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2018, 48 (03) : 291 - 303
  • [27] Memristor variability and stochastic physical properties modeling from a multivariate time series approach
    Alonso, F. J.
    Maldonado, D.
    Aguilera, A. M.
    Roldan, J. B.
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [28] Variability Effects in Graphene: Challenges and Opportunities for Device Engineering and Applications
    Xu, Guangyu
    Zhang, Yuegang
    Duan, Xiangfeng
    Balandin, Alexander A.
    Wang, Kang L.
    PROCEEDINGS OF THE IEEE, 2013, 101 (07) : 1670 - 1688
  • [29] Neuromorphic Computing with Phase Change, Device Reliability, and Variability Challenges
    Mackin, Charles
    Narayanan, Pritish
    Ambrogio, Stefano
    Tsai, Hsinyu
    Spoon, Katie
    Fasoli, Andrea
    Chen, An
    Friz, Alexander
    Shelby, Robert M.
    Burr, Geoffrey W.
    2020 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2020,
  • [30] Defining a new era in modeling and simulations: Trends and challenges
    Varma-O-Brien, Shikha
    Yan, Lisa
    Guzman-Hernandez, Francisco
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239