An accurate fixed-point 8x8 IDCT algorithm based on 2-D algebraic integer representation

被引:0
|
作者
Amer, Ihab [1 ]
Badawy, Wael [1 ]
Dimitrov, Vassil [1 ]
Jullien, Graham [1 ]
机构
[1] ATIPS, Calgary, AB, Canada
关键词
iDCT; fixed-point; algebraic integers; MPEG; video coding;
D O I
10.1117/12.740227
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper proposes an algorithm that is based on the application of Algebraic Integer (AI) representation of numbers on the AAN fast Inverse Discrete Cosine Transform (IDCT) algorithm. AI representation allows for maintaining an error-free representation of IDCT until the last step of each 1-D stage of the algorithm, where a reconstruction step from the AI domain to the fixed precision binary domain is required. This delay in introducing the rounding error prevents the accumulation of error throughout the calculations, which leads to the reported high-accuracy results. The proposed algorithm is simple and well suited for hardware implementation due to the absence of computationally extensive multiplications. The obtained results confirm the high accuracy of the proposed algorithm compared to other fixed-point implementations of IDCT.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Fast 16-bit fixed-point 8x8 IDCT approximations
    Liu, Lijie
    Tran, Trac D.
    Topiwala, Pankaj
    [J]. 2006 FORTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-5, 2006, : 989 - +
  • [2] Fixed-point error analysis and wordlength optimization of a distributed arithmetic based 8x8 2D-IDCT architecture
    Kim, S
    Sung, W
    [J]. VLSI SIGNAL PROCESSING, IX, 1996, : 398 - 407
  • [3] Fixed-point error analysis and word length optimization of 8x8 IDCT architectures
    Kim, S
    Sung, W
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 1998, 8 (08) : 935 - 940
  • [4] Algebraic Integer based 8x8 2-D DCT Architecture for Digital Video Processing
    Madanayake, H. L. P. Arjuna
    Cintra, R. J.
    Onen, D.
    Dimitrov, V. S.
    Bruton, L. T.
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 1247 - 1250
  • [5] A new design and implementation of 8x8 2-D DCT/IDCT
    Lee, YP
    Chen, LG
    Chen, MJ
    Ku, CW
    [J]. VLSI SIGNAL PROCESSING, IX, 1996, : 408 - 417
  • [6] Error-free computation of 8x8 2-D DCT and IDCT using two-dimensional algebraic integer quantization
    Wahid, K
    Dimitrov, V
    Jullien, G
    [J]. 17TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 2005, : 214 - 221
  • [7] Implementation of a 2-d 8x8 IDCT on the reconfigurable montium core
    Smit, L. T.
    Rauwerda, G. K.
    Molderink, A.
    Wolkotte, P. T.
    Smit, G. J. M.
    [J]. 2007 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS, PROCEEDINGS, VOLS 1 AND 2, 2007, : 562 - 566
  • [8] Low-drift fixed-point 8x8 IDCT approximation with 8-bit transform factors
    Reznik, Yuriy A.
    Hsu, De
    Panda, Prasanjit
    Pillai, Br Esh
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 2877 - 2880
  • [9] A Single-Channel Architecture for Algebraic Integer-Based 8x8 2-D DCT Computation
    Edirisuriya, Amila
    Madanayake, Arjuna
    Cintra, Renato J.
    Dimitrov, Vassil S.
    Rajapaksha, Nilanka
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2013, 23 (12) : 2083 - 2089
  • [10] A 100-MHZ 2-D 8X8 DCT/IDCT PROCESSOR FOR HDTV APPLICATIONS
    MADISETTI, A
    WILLSON, AN
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 1995, 5 (02) : 158 - 165