Feynman integrals as A-hypergeometric functions

被引:44
|
作者
de la Cruz, Leonardo [1 ]
机构
[1] Univ Edinburgh, Higgs Ctr Theoret Phys, Sch Phys & Astron, Edinburgh EH9 3FD, Midlothian, Scotland
关键词
Scattering Amplitudes; Differential and Algebraic Geometry; Perturbative; QCD; MATHEMATICA-BASED PACKAGES; 2-LOOP MASTER INTEGRALS; DIFFERENTIAL-EQUATIONS; RECURRENCE RELATIONS; DIMER MODELS; REDUCTION; EXPANSION; HYPERDIRE; POLYLOGARITHMS; DIAGRAMS;
D O I
10.1007/JHEP12(2019)123
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that the Lee-Pomeransky parametric representation of Feynman integrals can be understood as a solution of a certain Gel'fand-Kapranov-Zelevinsky (GKZ) system. In order to define such GKZ system, we consider the polynomial obtained from the Symanzik polynomials g = U + F as having indeterminate coefficients. Noncompact integration cycles can be determined from the coamoeba - the argument mapping - of the algebraic variety associated with g. In general, we add a deformation to g in order to define integrals of generic graphs as linear combinations of their canonical series. We evaluate several Feynman integrals with arbitrary non-integer powers in the propagators using the canonical series algorithm.
引用
收藏
页数:45
相关论文
共 50 条
  • [31] INTEGRALS OF CONFLUENT HYPERGEOMETRIC FUNCTIONS
    NG, EW
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (02): : 181 - &
  • [32] Some integrals of hypergeometric functions
    A. Biró
    Acta Mathematica Hungarica, 2017, 152 : 58 - 71
  • [33] Certain integrals of generalized hypergeometric and confluent hypergeometric functions
    Kumar, Dinesh
    SIGMAE, 2016, 5 (02): : 8 - 18
  • [34] A-hypergeometric distributions and Newton polytopes
    Takayama, Nobuki
    Kuriki, Satoshi
    Takemura, Akimichi
    ADVANCES IN APPLIED MATHEMATICS, 2018, 99 : 109 - 133
  • [35] ON THE PARAMETRIC BEHAVIOR OF A-HYPERGEOMETRIC SERIES
    Berkesch, Christine
    Forsgard, Jens
    Matusevich, Laura Felicia
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (06) : 4089 - 4109
  • [36] On the local monodromy of A-hypergeometric functions and some monodromy invariant subspaces
    Fernandez-Fernandez, Maria-Cruz
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (03) : 949 - 961
  • [37] Logarithmic A-hypergeometric series
    Saito, Mutsumi
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (13)
  • [38] Elliptic Feynman integrals and pure functions
    Broedel, Johannes
    Duhr, Claude
    Dulat, Falko
    Penante, Brenda
    Tancredi, Lorenzo
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [39] Elliptic Feynman integrals and pure functions
    Johannes Broedel
    Claude Duhr
    Falko Dulat
    Brenda Penante
    Lorenzo Tancredi
    Journal of High Energy Physics, 2019
  • [40] Reclassifying Feynman integrals as special functions
    Liu, Zhi-Feng
    Ma, Yan-Qing
    Wang, Chen-Yu
    SCIENCE BULLETIN, 2024, 69 (07) : 859 - 862