Feynman integrals as A-hypergeometric functions

被引:44
|
作者
de la Cruz, Leonardo [1 ]
机构
[1] Univ Edinburgh, Higgs Ctr Theoret Phys, Sch Phys & Astron, Edinburgh EH9 3FD, Midlothian, Scotland
关键词
Scattering Amplitudes; Differential and Algebraic Geometry; Perturbative; QCD; MATHEMATICA-BASED PACKAGES; 2-LOOP MASTER INTEGRALS; DIFFERENTIAL-EQUATIONS; RECURRENCE RELATIONS; DIMER MODELS; REDUCTION; EXPANSION; HYPERDIRE; POLYLOGARITHMS; DIAGRAMS;
D O I
10.1007/JHEP12(2019)123
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that the Lee-Pomeransky parametric representation of Feynman integrals can be understood as a solution of a certain Gel'fand-Kapranov-Zelevinsky (GKZ) system. In order to define such GKZ system, we consider the polynomial obtained from the Symanzik polynomials g = U + F as having indeterminate coefficients. Noncompact integration cycles can be determined from the coamoeba - the argument mapping - of the algebraic variety associated with g. In general, we add a deformation to g in order to define integrals of generic graphs as linear combinations of their canonical series. We evaluate several Feynman integrals with arbitrary non-integer powers in the propagators using the canonical series algorithm.
引用
收藏
页数:45
相关论文
共 50 条
  • [21] GKZ-hypergeometric systems for Feynman integrals
    Feng, Tai-Fu
    Chang, Chao-Hsi
    Chen, Jian-Bin
    Zhang, Hai-Bin
    NUCLEAR PHYSICS B, 2020, 953
  • [22] Iterated elliptic and hypergeometric integrals for Feynman diagrams
    Ablinger, J.
    Bluemlein, J.
    De Freitas, A.
    van Hoeij, M.
    Imamoglu, E.
    Raab, C. G.
    Radu, C. -S.
    Schneider, C.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [23] INTEGRALS OF HYPERGEOMETRIC FUNCTIONS
    SINGAL, RP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (03): : 559 - &
  • [24] INTEGRALS OF HYPERGEOMETRIC FUNCTIONS
    BUSCHMAN, RG
    MATHEMATISCHE ZEITSCHRIFT, 1965, 89 (01) : 74 - &
  • [25] Monodromy at infinity of A-hypergeometric functions and toric compactifications
    Takeuchi, Kiyoshi
    MATHEMATISCHE ANNALEN, 2010, 348 (04) : 815 - 831
  • [26] Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams
    Cabral-Rosetti, LG
    Sanchis-Lozano, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) : 93 - 99
  • [27] CONFLUENT A-HYPERGEOMETRIC FUNCTIONS AND RAPID DECAY HOMOLOGY CYCLES
    Esterov, Alexander
    Takeuchi, Kiyoshi
    AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (02) : 365 - 409
  • [28] Irreducibility of A-hypergeometric systems
    Beukers, F.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2011, 21 (1-2): : 30 - 39
  • [29] Some integrals of hypergeometric functions
    Biro, A.
    ACTA MATHEMATICA HUNGARICA, 2017, 152 (01) : 58 - 71
  • [30] MODIFIED A-HYPERGEOMETRIC SYSTEMS
    Takayama, Nobuki
    KYUSHU JOURNAL OF MATHEMATICS, 2009, 63 (01) : 113 - 122