Feynman integrals as A-hypergeometric functions

被引:44
|
作者
de la Cruz, Leonardo [1 ]
机构
[1] Univ Edinburgh, Higgs Ctr Theoret Phys, Sch Phys & Astron, Edinburgh EH9 3FD, Midlothian, Scotland
关键词
Scattering Amplitudes; Differential and Algebraic Geometry; Perturbative; QCD; MATHEMATICA-BASED PACKAGES; 2-LOOP MASTER INTEGRALS; DIFFERENTIAL-EQUATIONS; RECURRENCE RELATIONS; DIMER MODELS; REDUCTION; EXPANSION; HYPERDIRE; POLYLOGARITHMS; DIAGRAMS;
D O I
10.1007/JHEP12(2019)123
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that the Lee-Pomeransky parametric representation of Feynman integrals can be understood as a solution of a certain Gel'fand-Kapranov-Zelevinsky (GKZ) system. In order to define such GKZ system, we consider the polynomial obtained from the Symanzik polynomials g = U + F as having indeterminate coefficients. Noncompact integration cycles can be determined from the coamoeba - the argument mapping - of the algebraic variety associated with g. In general, we add a deformation to g in order to define integrals of generic graphs as linear combinations of their canonical series. We evaluate several Feynman integrals with arbitrary non-integer powers in the propagators using the canonical series algorithm.
引用
收藏
页数:45
相关论文
共 50 条
  • [1] Feynman integrals as A-hypergeometric functions
    Leonardo de la Cruz
    Journal of High Energy Physics, 2019
  • [2] GENERALIZED EULER INTEGRALS AND A-HYPERGEOMETRIC FUNCTIONS
    GELFAND, IM
    KAPRANOV, MM
    ZELEVINSKY, AV
    ADVANCES IN MATHEMATICS, 1990, 84 (02) : 255 - 271
  • [3] Feynman integrals and hypergeometric functions
    Garcia, Hector Luna
    Garcia, Luz Maria
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2014, 5
  • [4] Feynman Integrals and Hypergeometric Functions
    Luna Garcia, Hector
    Maria Garcia, Luz
    Mares, Ruben
    Ortega, Enrique
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [5] Euler-Mellin Integrals and A-Hypergeometric Functions
    Berkesch, Christine
    Forsgard, Jens
    Passare, Mikael
    MICHIGAN MATHEMATICAL JOURNAL, 2014, 63 (01) : 101 - 123
  • [6] Algebraic A-hypergeometric functions
    Frits Beukers
    Inventiones mathematicae, 2010, 180 : 589 - 610
  • [7] Generalized hypergeometric functions and intersection theory for Feynman integrals
    Abreu, Samuel
    Britto, Ruth
    Duhr, Claude
    Gardi, Einan
    Matthew, James
    14TH INTERNATIONAL SYMPOSIUM ON RADIATIVE CORRECTIONS, RADCOR2019, 2020,
  • [8] Monodromy of A-hypergeometric functions
    Beukers, Frits
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 718 : 183 - 206
  • [9] Algebraic A-hypergeometric functions
    Beukers, Frits
    INVENTIONES MATHEMATICAE, 2010, 180 (03) : 589 - 610
  • [10] On Transformations of A-Hypergeometric Functions
    Forsgard, Jens
    Matusevich, Laura Felicia
    Sobieska, Aleksandra
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2019, 62 (03): : 319 - 336