Check of AGT relation for conformal blocks on sphere

被引:26
|
作者
Alba, V. [1 ,2 ,3 ,5 ]
Morozov, A. [1 ,4 ]
机构
[1] ITEP, Moscow 117218, Russia
[2] RAS, LD Landau Theoret Phys Inst, Moscow 119334, Russia
[3] Moscow Inst Phys & Technol, Dept Gen & Appl Phys, Dolgoprudnyi 141700, Moscow Reg, Russia
[4] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119991, Russia
[5] Bogolyubov Inst Theoret Phys NASU, UA-03680 Kiev, Ukraine
关键词
Conformal and W symmetry; Supersymmetry and duality; Supersymmetric effective theories; AGT conjecture; SYMMETRY; INTEGRABILITY; DUALITY;
D O I
10.1016/j.nuclphysb.2010.05.016
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The AGT conjecture identifying conformal blocks with the Nekrasov functions is investigated for the spherical conformal blocks with more than 4 external legs. The diagram technique which arises in conformal block calculation involves propagators and vertices. We evaluated vertices with two Virasoro algebra descendants and explicitly checked the AGT relation up to the third order of the expansion for the 5-point and 6-point conformal blocks on sphere confirming all the predictions of arXiv:0906.3219 relevant in this situation. We propose that U(1)-factor can be extracted from the matrix elements of the free field vertex operators. We studied the n-point case, and found out that our results confirm the AGT conjecture up to the third order expansions. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:441 / 468
页数:28
相关论文
共 50 条
  • [31] Conformal Janus on Euclidean sphere
    Dongsu Bak
    Andreas Gustavsson
    Soo-Jong Rey
    Journal of High Energy Physics, 2016
  • [32] Coset Constructions of Conformal Blocks
    Ikeda, T.
    International Journal of Modern Physics B, 11 (19):
  • [33] Projectors, shadows, and conformal blocks
    David Simmons-Duffin
    Journal of High Energy Physics, 2014
  • [34] Combinatorial expansions of conformal blocks
    A. V. Marshakov
    A. D. Mironov
    A. Yu. Morozov
    Theoretical and Mathematical Physics, 2010, 164 : 831 - 852
  • [35] CONFORMAL BLOCKS OF MINIMAL MODELS
    GERASIMOV, A
    MOROZOV, A
    JETP LETTERS, 1988, 48 (08) : 449 - 452
  • [36] CONFORMAL BLOCKS FOR MINIMAL MODELS
    GERASIMOV, A
    MOROZOV, A
    PHYSICS LETTERS B, 1989, 225 (1-2) : 87 - 91
  • [37] Painlevé Functions and Conformal Blocks
    N. Iorgov
    O. Lisovyy
    A. Shchechkin
    Y. Tykhyy
    Constructive Approximation, 2014, 39 : 255 - 272
  • [38] Painlev, Functions and Conformal Blocks
    Iorgov, N.
    Lisovyy, O.
    Shchechkin, A.
    Tykhyy, Y.
    CONSTRUCTIVE APPROXIMATION, 2014, 39 (01) : 255 - 272
  • [39] Torus classical conformal blocks
    Menotti, Pietro
    MODERN PHYSICS LETTERS A, 2018, 33 (28)
  • [40] Dimensional reduction for conformal blocks
    Matthijs Hogervorst
    Journal of High Energy Physics, 2016