A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event

被引:160
|
作者
Rizopoulos, Dimitris [1 ]
Ghosh, Pulak [2 ]
机构
[1] Erasmus MC, Dept Biostat, NL-3000 CA Rotterdam, Netherlands
[2] Indian Inst Management, Dept Quantitat Methods & Informat Sci, Bangalore, Karnataka, India
关键词
Dirichlet process prior; dropout; shared parameter model; splines; survival analysis; time-dependent covariates; SHARED PARAMETER MODELS; SURVIVAL; DEFINITION; INFERENCE;
D O I
10.1002/sim.4205
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivated by a real data example on renal graft failure, we propose a new semiparametric multivariate joint model that relates multiple longitudinal outcomes to a time-to-event. To allow for greater flexibility, key components of the model are modelled nonparametrically. In particular, for the subject-specific longitudinal evolutions we use a spline-based approach, the baseline risk function is assumed piecewise constant, and the distribution of the latent terms is modelled using a Dirichlet Process prior formulation. Additionally, we discuss the choice of a suitable parameterization, from a practitioner's point of view, to relate the longitudinal process to the survival outcome. Specifically, we present three main families of parameterizations, discuss their features, and present tools to choose between them. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:1366 / 1380
页数:15
相关论文
共 50 条
  • [31] RETRACTION: A Bayesian joint model for multivariate longitudinal and time-to-event data with application to ALL maintenance studies (Retraction of February, 10.1080/10543406.2023.2171430, 2023)
    Kundu, Damitri
    Sarkar, Partha
    Das, Kiranmoy
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2024,
  • [32] Joint Modeling of Longitudinal and Time-to-Event Data
    Jacqmin-Gadda, Helene
    [J]. BIOMETRICS, 2018, 74 (01) : 383 - 384
  • [33] Joint models with multiple longitudinal outcomes and a time-to-event outcome: a corrected two-stage approach
    Mauff, Katya
    Steyerberg, Ewout
    Kardys, Isabella
    Boersma, Eric
    Rizopoulos, Dimitris
    [J]. STATISTICS AND COMPUTING, 2020, 30 (04) : 999 - 1014
  • [34] Semiparametric multivariate joint model for skewed-longitudinal and survival data: A Bayesian approach
    Chen, Jiaqing
    Huang, Yangxin
    Wang, Qing
    [J]. STATISTICS IN MEDICINE, 2023, 42 (27) : 4972 - 4989
  • [35] Joint models with multiple longitudinal outcomes and a time-to-event outcome: a corrected two-stage approach
    Katya Mauff
    Ewout Steyerberg
    Isabella Kardys
    Eric Boersma
    Dimitris Rizopoulos
    [J]. Statistics and Computing, 2020, 30 : 999 - 1014
  • [36] Faster Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data
    Philipson, Pete
    Hickey, Graeme L.
    Crowther, Michael J.
    Kolamunnage-Dona, Ruwanthi
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 151
  • [37] A joint model for nonparametric functional mapping of longitudinal trajectory and time-to-event
    Lin, Min
    Wu, Rongling
    [J]. BMC BIOINFORMATICS, 2006, 7 (1)
  • [38] BAYESIAN JOINT MODELING OF LONGITUDINAL MEASUREMENTS AND TIME-TO-EVENT DATA USING ROBUST DISTRIBUTIONS
    Baghfalaki, T.
    Ganjali, M.
    Hashemi, R.
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2014, 24 (04) : 834 - 855
  • [39] Sequential Monte Carlo methods in Bayesian joint models for longitudinal and time-to-event data
    Alvares, Danilo
    Armero, Carmen
    Forte, Anabel
    Chopin, Nicolas
    [J]. STATISTICAL MODELLING, 2021, 21 (1-2) : 161 - 181
  • [40] Bayesian design of clinical trials using joint models for longitudinal and time-to-event data
    Xu, Jiawei
    Psioda, Matthew A.
    Ibrahim, Joseph G.
    [J]. BIOSTATISTICS, 2022, 23 (02) : 591 - 608