A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event

被引:160
|
作者
Rizopoulos, Dimitris [1 ]
Ghosh, Pulak [2 ]
机构
[1] Erasmus MC, Dept Biostat, NL-3000 CA Rotterdam, Netherlands
[2] Indian Inst Management, Dept Quantitat Methods & Informat Sci, Bangalore, Karnataka, India
关键词
Dirichlet process prior; dropout; shared parameter model; splines; survival analysis; time-dependent covariates; SHARED PARAMETER MODELS; SURVIVAL; DEFINITION; INFERENCE;
D O I
10.1002/sim.4205
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivated by a real data example on renal graft failure, we propose a new semiparametric multivariate joint model that relates multiple longitudinal outcomes to a time-to-event. To allow for greater flexibility, key components of the model are modelled nonparametrically. In particular, for the subject-specific longitudinal evolutions we use a spline-based approach, the baseline risk function is assumed piecewise constant, and the distribution of the latent terms is modelled using a Dirichlet Process prior formulation. Additionally, we discuss the choice of a suitable parameterization, from a practitioner's point of view, to relate the longitudinal process to the survival outcome. Specifically, we present three main families of parameterizations, discuss their features, and present tools to choose between them. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:1366 / 1380
页数:15
相关论文
共 50 条
  • [21] Joint modeling of longitudinal continuous, longitudinal ordinal, and time-to-event outcomes
    Khurshid Alam
    Arnab Maity
    Sanjoy K. Sinha
    Dimitris Rizopoulos
    Abdus Sattar
    [J]. Lifetime Data Analysis, 2021, 27 : 64 - 90
  • [22] Joint modeling of longitudinal continuous, longitudinal ordinal, and time-to-event outcomes
    Alam, Khurshid
    Maity, Arnab
    Sinha, Sanjoy K.
    Rizopoulos, Dimitris
    Sattar, Abdus
    [J]. LIFETIME DATA ANALYSIS, 2021, 27 (01) : 64 - 90
  • [23] Joint modeling of longitudinal and time-to-event data on multivariate protein biomarkers
    Thomas, Abin
    Vishwakarma, Gajendra K.
    Bhattacharjee, Atanu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 381
  • [24] Joint modeling of longitudinal and time-to-event data on multivariate protein biomarkers
    Thomas, Abin
    Vishwakarma, Gajendra K.
    Bhattacharjee, Atanu
    [J]. Journal of Computational and Applied Mathematics, 2021, 381
  • [25] Bayesian Approach for Joint Longitudinal and Time-to-Event Data with Survival Fraction
    Abu Bakar, Mohd Rizam
    Salah, Khalid A.
    Ibrahim, Noor Akma
    Haron, Kassim
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2009, 32 (01) : 75 - 100
  • [26] A Bayesian joint model for multivariate longitudinal and time-to-event data with application to ALL maintenance studies (Feb, 10.1080/10543406.2023.2171430, 2023)
    Kundu, Damitri
    Sarkar, Partha
    Gogoi, Manash Pratim
    Das, Kiranmoy
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2023,
  • [27] Joint models for multiple longitudinal processes and time-to-event outcome
    Yang, Lili
    Yu, Menggang
    Gao, Sujuan
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (18) : 3682 - 3700
  • [28] Bayesian semiparametric joint model of multivariate longitudinal and survival data with dependent censoring
    An-Min Tang
    Nian-Sheng Tang
    Dalei Yu
    [J]. Lifetime Data Analysis, 2023, 29 : 888 - 918
  • [29] Bayesian semiparametric joint model of multivariate longitudinal and survival data with dependent censoring
    Tang, An-Min
    Tang, Nian-Sheng
    Yu, Dalei
    [J]. LIFETIME DATA ANALYSIS, 2023, 29 (04) : 888 - 918
  • [30] Semiparametric Bayesian joint models of multivariate longitudinal and survival data
    Tang, Nian-Sheng
    Tang, An-Min
    Pan, Dong-Dong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 77 : 113 - 129