On an Eigenvalue for the Laplace Operator in a Disk with Dirichlet Boundary Condition on a Small Part of the Boundary in a Critical Case

被引:1
|
作者
Gadyl'shin, R. R. [1 ]
Rep'evskii, S. V. [2 ]
Shishkina, E. A. [1 ]
机构
[1] Bashkir State Pedag Univ, Ul Oktyabrskoi Revolyutsii 3A, Ufa 450000, Russia
[2] Chelyabinsk State Univ, Ul Br Kashirinykh 129, Chelyabinsk 454001, Russia
基金
俄罗斯基础研究基金会;
关键词
Laplace operator; singular perturbation; small parameter; eigenvalue; asymptotics;
D O I
10.1134/S0081543816020073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A boundary-value problem of finding eigenvalues is considered for the negative Laplace operator in a disk with Neumann boundary condition on almost all the circle except for a small arc of vanishing length, where the Dirichlet boundary condition is imposed. A complete asymptotic expansion with respect to a parameter (the length of the small arc) is constructed for an eigenvalue of this problem that converges to a double eigenvalue of the Neumann problem.
引用
收藏
页码:S76 / S90
页数:15
相关论文
共 50 条
  • [11] Additive Eigenvalue Problems of the Laplace Operator with the Prescribed Contact Angle Boundary Condition
    Li, Hongmei
    Wang, Peihe
    COMPLEXITY, 2020, 2020
  • [12] Maximization of combinatorial Schrodinger operator's smallest eigenvalue with Dirichlet boundary condition
    Mohanty, S.
    Lal, A. K.
    DISCRETE MATHEMATICS, 2015, 338 (07) : 1131 - 1143
  • [13] Eigenvalue Problem for the Laplace Operator with Nonlocal Boundary Conditions
    I. L. Pokrovski
    Differential Equations, 2018, 54 : 1363 - 1370
  • [14] Eigenvalue Problem for the Laplace Operator with Nonlocal Boundary Conditions
    Pokrovski, I. L.
    DIFFERENTIAL EQUATIONS, 2018, 54 (10) : 1363 - 1370
  • [15] On elliptic operators with Steklov condition perturbed by Dirichlet condition on a small part of boundary
    D. I. Borisov
    G. Cardone
    G. A. Chechkin
    Yu. O. Koroleva
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [16] On elliptic operators with Steklov condition perturbed by Dirichlet condition on a small part of boundary
    Borisov, D., I
    Cardone, G.
    Chechkin, G. A.
    Koroleva, Yu O.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (01)
  • [17] A NONLOCAL BOUNDARY PROBLEM FOR THE LAPLACE OPERATOR IN A HALF DISK
    Besbaev, Gania A.
    Orazov, Isabek
    Sadybekov, Makhmud A.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [18] Extremal eigenvalue gaps for the Schrodinger operator with Dirichlet boundary conditions
    Karaa, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (04) : 2325 - 2332
  • [19] Deep Ritz Methods for Laplace Equations with Dirichlet Boundary Condition
    Duan, Chenguang
    Jiao, Yuling
    Lai, Yanming
    Lu, Xiliang
    Quan, Qimeng
    Yang, Jerry Zhijian
    CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2022, 3 (04): : 761 - 791
  • [20] SMALL EIGENVALUES OF THE WITTEN LAPLACIAN WITH DIRICHLET BOUNDARY CONDITIONS: THE CASE WITH CRITICAL POINTS ON THE BOUNDARY
    Le Peutrec, Dorian
    Nectoux, Boris
    ANALYSIS & PDE, 2021, 14 (08): : 2595 - 2651