Iterative solvers for image denoising with diffusion models: A comparative study

被引:10
|
作者
Jain, Subit K. [1 ]
Ray, Rajendra K. [1 ]
Bhavsar, Arnav [2 ]
机构
[1] Indian Inst Technol Mandi, Sch Basic Sci, Pin 175001, India
[2] Indian Inst Technol Mandi, Sch Comp & Elect Engn, Pin 175001, India
关键词
Perona-Malik; Bilateral filter; Crank-Nicolson scheme; Successive-over-relaxation; Hybrid bi-conjugate gradient stabilized method; Denoising; OPTIMAL STOPPING TIME; EDGE;
D O I
10.1016/j.camwa.2015.04.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose and compare the use of two iterative solvers using the Crank-Nicolson finite difference method, to address the task of image denoising via partial differential equations (PDEs) models such as Regularized Perona-Malik equation or C-model and Bazan model (Bilateral-filter-based model). The solvers which are considered in this paper are the Successive-over-Relaxation (SOR) and an advanced solver known as Hybrid Bi-Conjugate Gradient Stabilized (Hybrid BiCGStab) method. From numerical experiments, it is found that the Crank-Nicolson method with hybrid BiCGStab iterative solver produces better results and is more efficient than SOR and already existing, in terms of MSSIM and PSNR. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:191 / 211
页数:21
相关论文
共 50 条
  • [31] DENOISING DIFFUSION MEDICAL MODELS
    Huy, Pham Ngoc
    Quan, Tran Minh
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [32] Quantum Denoising Diffusion Models
    Koelle, Michael
    Stenzel, Gerhard
    Stein, Jonas
    Zielinski, Sebastian
    Ommer, Bjoen
    Linnhoff-Popien, Claudia
    2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM SOFTWARE, IEEE QSW 2024, 2024, : 88 - 98
  • [33] Residual Denoising Diffusion Models
    Liu, Jiawei
    Wang, Qiang
    Fan, Huijie
    Wang, Yinong
    Tang, Yandong
    Qu, Liangqiong
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 2773 - 2783
  • [34] Denoising Diffusion Restoration Models
    Kawar, Bahjat
    Elad, Michael
    Ermon, Stefano
    Song, Jiaming
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [35] ITERATIVE REFINEMENT NETWORK FOR HYPERSPECTRAL IMAGE DENOISING
    Xiong, Fengchao
    Zhou, Jun
    Zhao, Zhuang
    Qian, Yuntao
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2753 - 2758
  • [36] Image Restoration by Iterative Denoising and Backward Projections
    Tirer, Torn
    Giryes, Raja
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (03) : 1220 - 1234
  • [37] A general iterative regularization framework for image denoising
    Charest, Michael R., Jr.
    Elad, Michael
    Milanfar, Peyman
    2006 40TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1-4, 2006, : 452 - 457
  • [38] Iterative Joint Image Demosaicking and Denoising Using a Residual Denoising Network
    Kokkinos, Filippos
    Lefkimmiatis, Stamatios
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (08) : 4177 - 4188
  • [39] Impact of iterative solvers on large complex numerical models
    Zaki, M
    Reed, M
    Swoboda, G
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 171 - 178
  • [40] A Patch-Based Method for Underwater Image Enhancement With Denoising Diffusion Models
    Xia, Haisheng
    Bao, Binglei
    Liao, Fei
    Chen, Jintao
    Wang, Binglu
    Li, Zhijun
    IEEE TRANSACTIONS ON CYBERNETICS, 2025, 55 (01) : 269 - 281