DENOISING DIFFUSION MEDICAL MODELS

被引:1
|
作者
Huy, Pham Ngoc [1 ]
Quan, Tran Minh [1 ,2 ]
机构
[1] Talosix, Ho Chi Minh City, Vietnam
[2] VinUniv, Hanoi, Vietnam
关键词
Image Synthesis; Generative Models; Denoising Diffusion; NeRP; ChestXR;
D O I
10.1109/ISBI53787.2023.10230674
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we introduce a generative model that can synthesize a large number of radiographical image/label pairs, and thus is asymptotically favorable to downstream activities such as segmentation in bio-medical image analysis. Denoising Diffusion Medical Model (DDMM), the proposed technique, can create realistic X-ray images and associated segmentations on a small number of annotated datasets as well as other massive unlabeled datasets with no supervision. Radiograph/segmentation pairs are generated jointly by the DDMM sampling process in probabilistic mode. As a result, a vanilla UNet that uses this data augmentation for segmentation task outperforms other similarly data-centric approaches.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Denoising Diffusion Adversarial Models for Unconditional Medical Image Generation
    Dalmaz, Onat
    Saglam, Baturay
    Elmas, Gokberk
    Mirza, Muhammad
    Cukur, Tolga
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [2] A Recycling Training Strategy for Medical Image Segmentation with Diffusion Denoising Models
    Fu, Yunguan
    Li, Yiwen
    Saeed, Shaheer U.
    Clarkson, Matthew J.
    Hu, Yipeng
    arXiv, 2023,
  • [3] Quantum Denoising Diffusion Models
    Koelle, Michael
    Stenzel, Gerhard
    Stein, Jonas
    Zielinski, Sebastian
    Ommer, Bjoen
    Linnhoff-Popien, Claudia
    2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM SOFTWARE, IEEE QSW 2024, 2024, : 88 - 98
  • [4] Residual Denoising Diffusion Models
    Liu, Jiawei
    Wang, Qiang
    Fan, Huijie
    Wang, Yinong
    Tang, Yandong
    Qu, Liangqiong
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 2773 - 2783
  • [5] Denoising Diffusion Restoration Models
    Kawar, Bahjat
    Elad, Michael
    Ermon, Stefano
    Song, Jiaming
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [6] No-New-Denoiser: A Critical Analysis of Diffusion Models for Medical Image Denoising
    Pfaff, Laura
    Wagner, Fabian
    Vysotskaya, Nastassia
    Thies, Mareike
    Maul, Noah
    Mei, Siyuan
    Wuerfl, Tobias
    Maier, Andreas
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT X, 2024, 15010 : 568 - 578
  • [7] Denoising diffusion probabilistic models for 3D medical image generation
    Khader, Firas
    Mueller-Franzes, Gustav
    Arasteh, Soroosh Tayebi
    Han, Tianyu
    Haarburger, Christoph
    Schulze-Hagen, Maximilian
    Schad, Philipp
    Engelhardt, Sandy
    Baessler, Bettina
    Foersch, Sebastian
    Stegmaier, Johannes
    Kuhl, Christiane
    Nebelung, Sven
    Kather, Jakob Nikolas
    Truhn, Daniel
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [8] Denoising diffusion probabilistic models for 3D medical image generation
    Firas Khader
    Gustav Müller-Franzes
    Soroosh Tayebi Arasteh
    Tianyu Han
    Christoph Haarburger
    Maximilian Schulze-Hagen
    Philipp Schad
    Sandy Engelhardt
    Bettina Baeßler
    Sebastian Foersch
    Johannes Stegmaier
    Christiane Kuhl
    Sven Nebelung
    Jakob Nikolas Kather
    Daniel Truhn
    Scientific Reports, 13 (1)
  • [9] Improved outcome models with denoising diffusion
    Dudas, D.
    Dilling, T. J.
    El Naqa, I.
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2024, 119
  • [10] DENOISING TASK ROUTING FOR DIFFUSION MODELS
    Park, Byeongjun
    Woo, Sangmin
    Go, Hyojun
    Kim, Jin-Young
    Kim, Changick
    12th International Conference on Learning Representations, ICLR 2024, 2024,