DENOISING DIFFUSION MEDICAL MODELS

被引:1
|
作者
Huy, Pham Ngoc [1 ]
Quan, Tran Minh [1 ,2 ]
机构
[1] Talosix, Ho Chi Minh City, Vietnam
[2] VinUniv, Hanoi, Vietnam
关键词
Image Synthesis; Generative Models; Denoising Diffusion; NeRP; ChestXR;
D O I
10.1109/ISBI53787.2023.10230674
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we introduce a generative model that can synthesize a large number of radiographical image/label pairs, and thus is asymptotically favorable to downstream activities such as segmentation in bio-medical image analysis. Denoising Diffusion Medical Model (DDMM), the proposed technique, can create realistic X-ray images and associated segmentations on a small number of annotated datasets as well as other massive unlabeled datasets with no supervision. Radiograph/segmentation pairs are generated jointly by the DDMM sampling process in probabilistic mode. As a result, a vanilla UNet that uses this data augmentation for segmentation task outperforms other similarly data-centric approaches.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] BEDiff: denoising diffusion probabilistic models for building extraction
    Lei, Yanjing
    Wang, Yuan
    Chan, Sixian
    Hu, Jie
    Zhou, Xiaolong
    Zhang, Hongkai
    OPTOELECTRONICS LETTERS, 2025, 21 (05) : 298 - 305
  • [22] Ultrasound Image Reconstruction with Denoising Diffusion Restoration Models
    Zhang, Yuxin
    Huneau, Clement
    Idier, Jerome
    Mateus, Diana
    DEEP GENERATIVE MODELS, DGM4MICCAI 2023, 2024, 14533 : 193 - 203
  • [23] BEDiff: denoising diffusion probabilistic models for building extraction
    LEI Yanjing
    WANG Yuan
    CHAN Sixian
    HU Jie
    ZHOU Xiaolong
    ZHANG Hongkai
    Optoelectronics Letters, 2025, 21 (05) : 298 - 305
  • [24] Denoising diffusion probabilistic models for generative alloy design☆
    Fernandez-Zelaia, Patxi
    Thapliyal, Saket
    Kannan, Rangasayee
    Nandwana, Peeyush
    Yamamoto, Yukinori
    Nycz, Andrzej
    Paquit, Vincent
    Kirka, Michael M.
    ADDITIVE MANUFACTURING, 2024, 94
  • [25] CDDM: Channel Denoising Diffusion Models for Wireless Communications
    Wu, Tong
    Chen, Zhiyong
    He, Dazhi
    Qian, Liang
    Xu, Yin
    Tao, Meixia
    Zhang, Wenjun
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 7429 - 7434
  • [26] ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
    Choi, Jooyoung
    Kim, Sungwon
    Jeong, Yonghyun
    Gwon, Youngjune
    Yoon, Sungroh
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 14347 - 14356
  • [27] RePaint: Inpainting using Denoising Diffusion Probabilistic Models
    Lugmayr, Andreas
    Danelljan, Martin
    Romero, Andres
    Yu, Fisher
    Timofte, Radu
    Van Gool, Luc
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 11451 - 11461
  • [28] Fourier ptychographic reconstruction with denoising diffusion probabilistic models
    Wu, Kai
    Pan, An
    Gao, Wei
    OPTICS AND LASER TECHNOLOGY, 2024, 176
  • [29] Semi-Implicit Denoising Diffusion Models (SIDDMs)
    Xu, Yanwu
    Gong, Mingming
    Xie, Shaoan
    Wei, Wei
    Grundmann, Matthias
    Batmanghelich, Kayhan
    Hou, Tingbo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [30] Statistically conditioned polycrystal generation using denoising diffusion models
    Buzzy, Michael O.
    Robertson, Andreas E.
    Kalidindi, Surya R.
    ACTA MATERIALIA, 2024, 267