Classical non-Abelian braiding of acoustic modes

被引:38
|
作者
Chen, Ze-Guo [1 ]
Zhang, Ruo-Yang [2 ]
Chan, C. T. [2 ]
Ma, Guancong [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Phys, Kowloon Tong, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
PANCHARATNAM-BERRY PHASE; QUANTUM; STATISTICS;
D O I
10.1038/s41567-021-01431-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Non-Abelian braiding is regarded as an essential process for realizing quantum logic. Its realizations in quantum systems often rely on the dynamic winding of anyons, which can be challenging to obtain. Implementing braiding in a classical system could, therefore, assist the experimental study of non-Abelian physics. Here we present the realization of the non-Abelian braiding of multiple degenerate acoustic waveguide modes. The dynamics of non-Abelian braiding can be captured by the non-Abelian Berry-Wilczek-Zee phase that connects the holonomic adiabatic evolutions of multiple degenerate states. The cyclic evolution of degenerate states induces a non-Abelian geometric phase, manifesting as the exchange of states. The non-Abelian characteristics are revealed by switching the order of two distinct braiding processes involving three modes. Our work demonstrates wave manipulations based on non-Abelian braiding and logic operations. Although it shows promise for applications, non-Abelian braiding is difficult to realize in electronic systems. Its demonstration using acoustic waveguides may provide a useful platform to study non-Abelian physics.
引用
收藏
页码:179 / +
页数:8
相关论文
共 50 条
  • [21] Non-Abelian braiding of Fibonacci anyons with a superconducting processor
    Xu, Shibo
    Sun, Zheng-Zhi
    Wang, Ke
    Li, Hekang
    Zhu, Zitian
    Dong, Hang
    Deng, Jinfeng
    Zhang, Xu
    Chen, Jiachen
    Wu, Yaozu
    Zhang, Chuanyu
    Jin, Feitong
    Zhu, Xuhao
    Gao, Yu
    Zhang, Aosai
    Wang, Ning
    Zou, Yiren
    Tan, Ziqi
    Shen, Fanhao
    Zhong, Jiarun
    Bao, Zehang
    Li, Weikang
    Jiang, Wenjie
    Yu, Li-Wei
    Song, Zixuan
    Zhang, Pengfei
    Xiang, Liang
    Guo, Qiujiang
    Wang, Zhen
    Song, Chao
    Wang, H.
    Deng, Dong-Ling
    NATURE PHYSICS, 2024, : 1469 - 1475
  • [22] Quantum groups and non-Abelian braiding in quantum Hall systems
    Slingerland, JK
    Bais, FA
    NUCLEAR PHYSICS B, 2001, 612 (03) : 229 - 290
  • [23] Braiding Non-Abelian Quasiholes in Fractional Quantum Hall States
    Wu, Yang-Le
    Estienne, B.
    Regnault, N.
    Bernevig, B. Andrei
    PHYSICAL REVIEW LETTERS, 2014, 113 (11)
  • [24] Nonadiabatic effects in the braiding of non-Abelian anyons in topological superconductors
    Cheng, Meng
    Galitski, Victor
    Das Sarma, S.
    PHYSICAL REVIEW B, 2011, 84 (10)
  • [25] Verifying non-Abelian statistics by numerical braiding Majorana fermions
    Cheng, Qiu-Bo
    He, Jing
    Kou, Su-Peng
    PHYSICS LETTERS A, 2016, 380 (5-6) : 779 - 782
  • [26] ZERO MODES OF NON-ABELIAN VORTICES
    ALFORD, M
    BENSON, K
    COLEMAN, S
    MARCHRUSSELL, J
    WILCZEK, F
    NUCLEAR PHYSICS B, 1991, 349 (02) : 414 - 438
  • [27] CLASSICAL NON-ABELIAN BERRY PHASE
    WU, YR
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (02) : 294 - 299
  • [28] Interference Measurements of Non-Abelian e/4 & Abelian e/2 Quasiparticle Braiding
    Willett, R. L.
    Shtengel, K.
    Nayak, C.
    Pfeiffer, L. N.
    Chung, Y. J.
    Peabody, M. L.
    Baldwin, K. W.
    West, K. W.
    PHYSICAL REVIEW X, 2023, 13 (01)
  • [29] Unsupervised learning of topological non-Abelian braiding in non-Hermitian bands
    Long, Yang
    Xue, Haoran
    Zhang, Baile
    NATURE MACHINE INTELLIGENCE, 2024, 6 (08) : 904 - 910
  • [30] Symmetry-protected non-Abelian braiding of Majorana Kramers pairs
    Gao, Pin
    He, Ying-Ping
    Liu, Xiong-Jun
    PHYSICAL REVIEW B, 2016, 94 (22)