Interference Measurements of Non-Abelian e/4 & Abelian e/2 Quasiparticle Braiding

被引:15
|
作者
Willett, R. L. [1 ,6 ]
Shtengel, K. [2 ]
Nayak, C. [3 ,4 ]
Pfeiffer, L. N. [5 ]
Chung, Y. J. [5 ]
Peabody, M. L. [1 ]
Baldwin, K. W. [5 ]
West, K. W. [5 ]
机构
[1] Nokia Bell Labs, Murray Hill, NJ 07974 USA
[2] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[3] Univ Calif Santa Barbara, Microsoft Quantum, Elings Hall, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[5] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[6] Nokia Bell Labs, Room 1d 217, Murray Hill, NJ 07974 USA
基金
美国国家科学基金会;
关键词
QUANTUM; CHARGE; STATES;
D O I
10.1103/PhysRevX.13.011028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum Hall states at filling factors v = 5/2 and 7/2 are expected to have Abelian charge-e/2 quasiparticles and non-Abelian charge-e/4 quasiparticles. The non-Abelian statistics of the latter is predicted to display a striking interferometric signature, the even-odd effect. By measuring resistance oscillations as a function of the magnetic field in Fabry-Pcrot interferometers using new high-purity heterostructures, we for the first time report experimental evidence for the non-Abelian nature of excitations at v = 7/2. At both v = 5/2 and 7/2, we also examine, for the first time, the fermion parity, a topological quantum number of an even number of non-Abelian quasiparticles. The phase of observed e/4 oscillations is reproducible and stable over long times (hours) near both filling factors, indicating stability of the fermion parity. At both fractions, when phase fluctuations are observed, they are predominantly pi phase flips, consistent with either fermion parity change or change in the number of the enclosed e/4 quasiparticles. We also examine lower-frequency oscillations attributable to Abelian interference processes in both states. Taken together, these results constitute new evidence for the non-Abelian nature of e/4 quasiparticles; the observed lifetime of their combined fermion parity further strengthens the case for their utility for topological quantum computation.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Quasiparticle operators with non-Abelian braiding statistics
    Cabra, DC
    Moreno, EF
    Rossini, GL
    PHYSICS LETTERS B, 1998, 437 (3-4) : 362 - 368
  • [2] Non-Abelian Braiding of Light
    Iadecola, Thomas
    Schuster, Thomas
    Chamon, Claudio
    PHYSICAL REVIEW LETTERS, 2016, 117 (07)
  • [3] Shortcuts to non-Abelian braiding
    Karzig, Torsten
    Pientka, Falko
    Refael, Gil
    von Oppen, Felix
    PHYSICAL REVIEW B, 2015, 91 (20):
  • [4] Non-Abelian braiding on photonic chips
    Xu-Lin Zhang
    Feng Yu
    Ze-Guo Chen
    Zhen-Nan Tian
    Qi-Dai Chen
    Hong-Bo Sun
    Guancong Ma
    Nature Photonics, 2022, 16 : 390 - 395
  • [5] Non-Abelian Braiding of Lattice Bosons
    Kapit, Eliot
    Ginsparg, Paul
    Mueller, Erich
    PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [6] Non-Abelian braiding on photonic chips
    Zhang, Xu-Lin
    Yu, Feng
    Chen, Ze-Guo
    Tian, Zhen-Nan
    Chen, Qi-Dai
    Sun, Hong-Bo
    Ma, Guancong
    NATURE PHOTONICS, 2022, 16 (05) : 390 - +
  • [7] Braiding and Fusion of Non-Abelian Vortex Anyons
    Mawson, T.
    Petersen, T. C.
    Slingerland, J. K.
    Simula, T. P.
    PHYSICAL REVIEW LETTERS, 2019, 123 (14)
  • [8] Classical non-Abelian braiding of acoustic modes
    Chen, Ze-Guo
    Zhang, Ruo-Yang
    Chan, C. T.
    Ma, Guancong
    NATURE PHYSICS, 2022, 18 (02) : 179 - +
  • [9] Non-Abelian Braiding of Topological Edge Bands
    Long, Yang
    Wang, Zihao
    Zhang, Chen
    Xue, Haoran
    Zhao, Y. X.
    Zhang, Baile
    PHYSICAL REVIEW LETTERS, 2024, 132 (23)
  • [10] Classical non-Abelian braiding of acoustic modes
    Ze-Guo Chen
    Ruo-Yang Zhang
    C. T. Chan
    Guancong Ma
    Nature Physics, 2022, 18 : 179 - 184