Interference Measurements of Non-Abelian e/4 & Abelian e/2 Quasiparticle Braiding

被引:15
|
作者
Willett, R. L. [1 ,6 ]
Shtengel, K. [2 ]
Nayak, C. [3 ,4 ]
Pfeiffer, L. N. [5 ]
Chung, Y. J. [5 ]
Peabody, M. L. [1 ]
Baldwin, K. W. [5 ]
West, K. W. [5 ]
机构
[1] Nokia Bell Labs, Murray Hill, NJ 07974 USA
[2] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[3] Univ Calif Santa Barbara, Microsoft Quantum, Elings Hall, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[5] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[6] Nokia Bell Labs, Room 1d 217, Murray Hill, NJ 07974 USA
基金
美国国家科学基金会;
关键词
QUANTUM; CHARGE; STATES;
D O I
10.1103/PhysRevX.13.011028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum Hall states at filling factors v = 5/2 and 7/2 are expected to have Abelian charge-e/2 quasiparticles and non-Abelian charge-e/4 quasiparticles. The non-Abelian statistics of the latter is predicted to display a striking interferometric signature, the even-odd effect. By measuring resistance oscillations as a function of the magnetic field in Fabry-Pcrot interferometers using new high-purity heterostructures, we for the first time report experimental evidence for the non-Abelian nature of excitations at v = 7/2. At both v = 5/2 and 7/2, we also examine, for the first time, the fermion parity, a topological quantum number of an even number of non-Abelian quasiparticles. The phase of observed e/4 oscillations is reproducible and stable over long times (hours) near both filling factors, indicating stability of the fermion parity. At both fractions, when phase fluctuations are observed, they are predominantly pi phase flips, consistent with either fermion parity change or change in the number of the enclosed e/4 quasiparticles. We also examine lower-frequency oscillations attributable to Abelian interference processes in both states. Taken together, these results constitute new evidence for the non-Abelian nature of e/4 quasiparticles; the observed lifetime of their combined fermion parity further strengthens the case for their utility for topological quantum computation.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Verifying non-Abelian statistics by numerical braiding Majorana fermions
    Cheng, Qiu-Bo
    He, Jing
    Kou, Su-Peng
    PHYSICS LETTERS A, 2016, 380 (5-6) : 779 - 782
  • [32] On the interpretation of the charge e in non-Abelian electrodynamics: conservation of causality
    Anon
    Journal of New Energy, 1999, 4 (03): : 183 - 186
  • [33] THE NON-ABELIAN SOLITONS FOR THE SL(2,C) NON-ABELIAN TODA LATTICE
    POPOWICZ, Z
    INVERSE PROBLEMS, 1987, 3 (02) : 329 - 340
  • [34] The quintessence with Abelian and non-Abelian symmetry
    Li, XZ
    Hao, JG
    Liu, DJ
    Zhai, XH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (32): : 5921 - 5930
  • [35] Non-Abelian statistics of vortices with non-Abelian Dirac fermions
    Yasui, Shigehiro
    Hirono, Yuji
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [36] Abelian and non-Abelian Weyl gravitoelectromagnetism
    Ramos, J.
    de Montigny, M.
    Khanna, F. C.
    ANNALS OF PHYSICS, 2020, 418
  • [37] Abelian representation for the non-Abelian Wilson loop and the non-Abelian Stokes theorem on the lattice
    Zubkov, MA
    PHYSICAL REVIEW D, 2003, 68 (05)
  • [38] Symmetry-protected non-Abelian braiding of Majorana Kramers pairs
    Gao, Pin
    He, Ying-Ping
    Liu, Xiong-Jun
    PHYSICAL REVIEW B, 2016, 94 (22)
  • [39] Phonons as a platform for non-Abelian braiding and its manifestation in layered silicates
    Bo Peng
    Adrien Bouhon
    Bartomeu Monserrat
    Robert-Jan Slager
    Nature Communications, 13
  • [40] Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe
    Bouhon, Adrien
    Wu, QuanSheng
    Slager, Robert-Jan
    Weng, Hongming
    Yazyev, Oleg, V
    Bzdusek, Tomas
    NATURE PHYSICS, 2020, 16 (11) : 1137 - +