Self-assembly in block polyelectrolytes

被引:27
|
作者
Yang, Shuang [1 ]
Vishnyakov, Aleksey [1 ]
Neimark, Alexander V. [1 ]
机构
[1] Rutgers State Univ, Dept Chem & Biochem Engn, Piscataway, NJ 08854 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 05期
关键词
CHARGED DIBLOCK COPOLYMERS; METHANOL FUEL-CELL; MICROPHASE SEPARATION; MESOSCOPIC SIMULATION; PHASE-BEHAVIOR; EQUILIBRIUM BEHAVIOR; TRANSPORT-PROPERTIES; AQUEOUS-SOLUTION; MELTS; MEMBRANES;
D O I
10.1063/1.3532831
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The self-consistent field theory (SCFT) complemented with the Poisson-Boltzmann equation is employed to explore self-assembly of polyelectrolyte copolymers composed of charged blocks A and neutral blocks B. We have extended SCFT to dissociating triblock copolymers and demonstrated our approach on three characteristic examples: (1) diblock copolymer (AB) melt, (2) symmetric triblock copolymer (ABA) melt, (3) triblock copolymer (ABA) solution with added electrolyte. For copolymer melts, we varied the composition (that is, the total fraction of A-segments in the system) and the charge density on A blocks and calculated the phase diagram that contains ordered mesophases of lamellar, gyroid, hexagonal, and bcc symmetries, as well as the uniform disordered phase. The phase diagram of charged block copolymer melts in the charge density - system composition coordinates is similar to the classical phase diagram of neutral block copolymer melts, where the composition and the Flory mismatch interaction parameter chi(AB) are used as variables. We found that the transitions between the polyelectrolyte mesophases with the increase of charge density occur in the same sequence, from lamellar to gyroid to hexagonal to bcc to disordered morphologies, as the mesophase transitions for neutral diblocks with the decrease of chi(AB). In a certain range of compositions, the phase diagram for charged triblock copolymers exhibits unexpected features, allowing for transitions from hexagonal to gyroid to lamellar mesophases as the charge density increases. Triblock polyelectrolyte solutions were studied by varying the charge density and solvent concentration at a fixed copolymer composition. Transitions from lamellar to gyroid and gyroid to hexagonal morphologies were observed at lower polymer concentrations than the respective transitions in the similar neutral copolymer, indicating a substantial influence of the charge density on phase behavior. (C) 2011 American Institute of Physics. [doi:10.1063/1.3532831]
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Ultrathin films prepared by the self-assembly of polyelectrolytes and nanoparticles.
    Cassegneau, T
    Moriguchi, I
    Fendler, JH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U332 - U332
  • [42] Conjugated polyelectrolytes: Self-assembly, amplified quenching and application to biosensors
    Schanze, Kirk S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [43] Self-Registered Self-Assembly of Block Copolymers
    Wan, Lei
    Ruiz, Ricardo
    Gao, He
    Albrecht, Thomas R.
    ACS NANO, 2017, 11 (08) : 7666 - 7673
  • [44] Synthesis and self-assembly of bottlebrush block copolymers
    Bowden, NB
    Runge, MB
    Dutta, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1103 - U1103
  • [45] Self-Assembly of Block Copolymers in Ionic Liquids
    Xie, Ru
    Lopez-Barron, Carlos R.
    Wagner, Norman J.
    IONIC LIQUIDS: CURRENT STATE AND FUTURE DIRECTIONS, 2017, 1250 : 83 - 142
  • [46] Self-assembly of responsive polypeptide block copolymers
    Savin, Daniel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [47] Optical Nanoimaging for Block Copolymer Self-Assembly
    Yan, Jie
    Zhao, Ling-Xi
    Li, Chong
    Hu, Zhe
    Zhang, Guo-Feng
    Chen, Ze-Qiang
    Chen, Tao
    Huang, Zhen-Li
    Zhu, Jintao
    Zhu, Ming-Qiang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (07) : 2436 - 2439
  • [48] Self-assembly of block copolymers in thin films
    Matsen, MW
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 1998, 3 (01) : 40 - 47
  • [49] Block copolymer self-assembly in ionic liquids
    Tamate, Ryota
    Hashimoto, Kei
    Ueki, Takeshi
    Watanabe, Masayoshi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (39) : 25123 - 25139
  • [50] Combining synthesis with self-assembly in block copolymers
    Wang, Muzhou
    Qiang, Zhe
    Akolawala, Sahil
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257