Self-assembly in block polyelectrolytes

被引:27
|
作者
Yang, Shuang [1 ]
Vishnyakov, Aleksey [1 ]
Neimark, Alexander V. [1 ]
机构
[1] Rutgers State Univ, Dept Chem & Biochem Engn, Piscataway, NJ 08854 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 05期
关键词
CHARGED DIBLOCK COPOLYMERS; METHANOL FUEL-CELL; MICROPHASE SEPARATION; MESOSCOPIC SIMULATION; PHASE-BEHAVIOR; EQUILIBRIUM BEHAVIOR; TRANSPORT-PROPERTIES; AQUEOUS-SOLUTION; MELTS; MEMBRANES;
D O I
10.1063/1.3532831
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The self-consistent field theory (SCFT) complemented with the Poisson-Boltzmann equation is employed to explore self-assembly of polyelectrolyte copolymers composed of charged blocks A and neutral blocks B. We have extended SCFT to dissociating triblock copolymers and demonstrated our approach on three characteristic examples: (1) diblock copolymer (AB) melt, (2) symmetric triblock copolymer (ABA) melt, (3) triblock copolymer (ABA) solution with added electrolyte. For copolymer melts, we varied the composition (that is, the total fraction of A-segments in the system) and the charge density on A blocks and calculated the phase diagram that contains ordered mesophases of lamellar, gyroid, hexagonal, and bcc symmetries, as well as the uniform disordered phase. The phase diagram of charged block copolymer melts in the charge density - system composition coordinates is similar to the classical phase diagram of neutral block copolymer melts, where the composition and the Flory mismatch interaction parameter chi(AB) are used as variables. We found that the transitions between the polyelectrolyte mesophases with the increase of charge density occur in the same sequence, from lamellar to gyroid to hexagonal to bcc to disordered morphologies, as the mesophase transitions for neutral diblocks with the decrease of chi(AB). In a certain range of compositions, the phase diagram for charged triblock copolymers exhibits unexpected features, allowing for transitions from hexagonal to gyroid to lamellar mesophases as the charge density increases. Triblock polyelectrolyte solutions were studied by varying the charge density and solvent concentration at a fixed copolymer composition. Transitions from lamellar to gyroid and gyroid to hexagonal morphologies were observed at lower polymer concentrations than the respective transitions in the similar neutral copolymer, indicating a substantial influence of the charge density on phase behavior. (C) 2011 American Institute of Physics. [doi:10.1063/1.3532831]
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Studies on self-assembly and characterization of polyelectrolytes and organic dyes
    Lin, XJ
    Zhong, AY
    Chen, DB
    Zhou, ZH
    He, BB
    JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 85 (03) : 638 - 644
  • [22] Self-assembly and co-assembly of block polyelectrolytes in aqueous solutions. Dissipative particle dynamics with explicit electrostatics
    Prochazka, Karel
    Sindelka, Karel
    Wang, Xiu
    Limpouchova, Zuzana
    Lisal, Martin
    MOLECULAR PHYSICS, 2016, 114 (21) : 3077 - 3092
  • [23] Polydispersity and block copolymer self-assembly
    Lynd, Nathaniel A.
    Meuler, Adam J.
    Hillmyer, Marc A.
    PROGRESS IN POLYMER SCIENCE, 2008, 33 (09) : 875 - 893
  • [24] Controlling block copolymer self-assembly
    Gould, Paula
    MATERIALS TODAY, 2007, 10 (10) : 12 - 12
  • [25] Directing the self-assembly of block copolymers
    Darling, S. B.
    PROGRESS IN POLYMER SCIENCE, 2007, 32 (10) : 1152 - 1204
  • [26] Block copolymer self-assembly for nanophotonics
    Stefik, Morgan
    Guldin, Stefan
    Vignolini, Silvia
    Wiesner, Ulrich
    Steiner, Ullrich
    CHEMICAL SOCIETY REVIEWS, 2015, 44 (15) : 5076 - 5091
  • [27] Directed self-assembly of block copolymers
    Takenaka, Mikihito
    Hasegawa, Hirokazu
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2013, 2 (01) : 88 - 94
  • [28] Self-assembly of reactive block polymers
    Hillmyer, Marc A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [29] SELF-ASSEMBLY Block molecules separate
    Moscatelli, Alberto
    NATURE NANOTECHNOLOGY, 2017, 12 (05) : 401 - 401
  • [30] Self-assembly of block copolypeptides.
    Deming, TJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U293 - U293