THE SCHUR CONVEXITY FOR THE GENERALIZED MUIRHEAD MEAN

被引:6
|
作者
Gong, Wei-Ming [1 ]
Sun, Hui [1 ]
Chu, Yu-Ming [1 ]
机构
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
来源
关键词
Generalized Muirhead mean; Schur convexity; Schur concavity; SYMMETRIC FUNCTION;
D O I
10.7153/jmi-08-64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For x, y > 0, a, b is an element of R with a+ b not equal 0, the generalized Muirhead mean is defined by M( a, b; x, y) = (x(a)y(b) + x(b)y(a)/2) . In this paper, we prove that M( a, b; x, y) is Schur convex with respect to ( x, y) is an element of ( 0,infinity) x( 0,infinity) if and only if ( a, b) is an element of{( a, b)is an element of R-2 : ( a- b) (2) >= a+ b > 0& ab <= 0} and Schur concave with respect to ( x, y). ( 0,infinity) x( 0,infinity) if and only if ( a, b)is an element of{( a, b)is an element of R-2 + : ( a- b)(2) not equal a+ b & ( a, b) = ( 0,0)}.{( a, b). R2 : a+ b < 0}, where R+ : = [ 0,8)
引用
收藏
页码:855 / 862
页数:8
相关论文
共 50 条
  • [1] The Schur-Convexity of the Generalized Muirhead-Heronian Means
    Deng, Yong-Ping
    Wu, Shan-He
    Chu, Yu-Ming
    He, Deng
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [2] Schur-Convexity of Generalized Heronian Mean
    Zhang, Tian-yu
    Ji, Ai-ping
    INFORMATION COMPUTING AND APPLICATIONS, PT II, 2011, 244 : 25 - 33
  • [3] SCHUR CONVEXITY AND SCHUR-GEOMETRICALLY CONCAVITY OF GENERALIZED EXPONENT MEAN
    Li, Da-Mao
    Shi, Huan-Nan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (02): : 217 - 225
  • [4] Schur convexity of the generalized geometric Bonferroni mean and the relevant inequalities
    Huan-Nan Shi
    Shan-He Wu
    Journal of Inequalities and Applications, 2018
  • [5] Schur convexity of the generalized geometric Bonferroni mean and the relevant inequalities
    Shi, Huan-Nan
    Wu, Shan-He
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [6] Schur convexity of generalized geometric Bonferroni mean involving three parameters
    Wu, Shan-He
    Shi, Huan-Nan
    Wang, Dong-Sheng
    Italian Journal of Pure and Applied Mathematics, 2019, (42): : 196 - 207
  • [7] Schur convexity of generalized geometric Bonferroni mean involving three parameters
    Wu, Shan-He
    Shi, Huan-Nan
    Wang, Dong-Sheng
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 196 - 207
  • [8] Schur convexity of Bonferroni harmonic mean
    Perla, Sreenivasa Reddy
    Padmanabhan, S.
    JOURNAL OF ANALYSIS, 2019, 27 (01): : 137 - 150
  • [9] Schur convexity of Bonferroni harmonic mean
    Sreenivasa Reddy Perla
    S. Padmanabhan
    The Journal of Analysis, 2019, 27 : 137 - 150
  • [10] The Schur Geometrical Convexity of the Extended Mean Values
    Chu Yuming
    Zhang Xiaoming
    Wang Gendi
    JOURNAL OF CONVEX ANALYSIS, 2008, 15 (04) : 707 - 718