Distributional barycenter problem through data-driven flows

被引:3
|
作者
Tabak, Esteban G. [1 ]
Trigila, Giulio [2 ]
Zhao, Wenjun [1 ]
机构
[1] Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] CUNY, Baruch Coll, 55 Lexington Ave, New York, NY 10010 USA
关键词
Optimal transport; Barycenter problem; Pattern visualization; Simulation; Generative models; OPTIMAL TRANSPORT; DENSITY-ESTIMATION; COLOR TRANSFER;
D O I
10.1016/j.patcog.2022.108795
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new method is proposed for the solution of the data-driven optimal transport barycenter problem and of the more general distributional barycenter problem that the article introduces. The distributional barycenter problem provides a conceptual and computational toolbox for central problems in pattern recognition, such as the simulation of conditional distributions, the construction of a representative for a family of distributions indexed by a covariate and a new class of data-based generative models. The method proposed improves on previous approaches based on adversarial games, by slaving the discriminator to the generator and minimizing the need for parameterizations. It applies not only to a discrete family of distributions, but to more general distributions conditioned to factors zof any cardinality and type. The methodology is applied to numerical examples, including an analysis of the MNIST data set with a new cost function that penalizes non-isometric maps. (c) 2022 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [21] Data-Driven NPR Illustrations of Natural Flows in Chinese Painting
    Lai, Yu-Chi
    Chen, Bo-An
    Chen, Kuo-Wei
    Si, Wei-Lin
    Yao, Chih-Yuan
    Zhang, Eugene
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (12) : 2535 - 2549
  • [22] DATA-DRIVEN FILTERED REDUCED ORDER MODELING OF FLUID FLOWS
    Xie, X.
    Mohebujjaman, M.
    Rebholz, L. G.
    Iliescu, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : B834 - B857
  • [23] Data-driven feature identification and sparse representation of turbulent flows
    Beit-Sadi, Mohammad
    Krol, Jakub
    Wynn, Andrew
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2021, 88
  • [24] On Data-Driven Sparse Sensing and Linear Estimation of Fluid Flows
    Jayaraman, Balaji
    Al Mamun, S. M. Abdullah
    SENSORS, 2020, 20 (13) : 1 - 31
  • [25] Overview of Data-Driven Models for Wind Turbine Wake Flows
    Maokun Ye
    Min Li
    Mingqiu Liu
    Chengjiang Xiao
    Decheng Wan
    Journal of Marine Science and Application, 2025, 24 (1) : 1 - 20
  • [26] Towards a data-driven model of hadronization using normalizing flows
    Bierlich, Christian
    Ilten, Phil
    Menzo, Tony
    Mrenna, Stephen
    Szewc, Manuel
    Wilkinson, Michael K.
    Youssef, Ahmed
    Zupan, Jure
    SCIPOST PHYSICS, 2024, 17 (02):
  • [27] Data-driven assessment of arch vortices in simplified urban flows
    Martinez-Sanchez, Alvaro
    Lazpita, Eneko
    Corrochano, Adrian
    Le Clainche, Soledad
    Hoyas, Sergio
    Vinuesa, Ricardo
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2023, 100
  • [28] Dynamically adaptive data-driven simulation of extreme hydrological flows
    Jain, Pushkar Kumar
    Mandli, Kyle
    Hoteit, Ibrahim
    Knio, Omar
    Dawson, Clint
    OCEAN MODELLING, 2018, 122 : 85 - 103
  • [29] On the Experimental, Numerical and Data-Driven Methods to Study Urban Flows
    Torres, Pablo
    Le Clainche, Soledad
    Vinuesa, Ricardo
    ENERGIES, 2021, 14 (05)
  • [30] Data-driven Analysis of Sulfur Flows and Behaviour in the Blast Furnace
    Helle, Mikko
    Saxen, Henrik
    STEEL RESEARCH INTERNATIONAL, 2008, 79 (09) : 671 - 677