Towards a data-driven model of hadronization using normalizing flows

被引:0
|
作者
Bierlich, Christian [1 ]
Ilten, Phil [2 ]
Menzo, Tony [2 ,3 ,4 ]
Mrenna, Stephen [2 ,5 ]
Szewc, Manuel [2 ]
Wilkinson, Michael K. [2 ]
Youssef, Ahmed [2 ]
Zupan, Jure [2 ,3 ,4 ]
机构
[1] Lund Univ, Dept Phys, Box 118, SE-22100 Lund, Sweden
[2] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA
[3] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA
[5] Fermilab Natl Accelerator Lab, Sci Comp Div, Batavia, IL 60510 USA
来源
SCIPOST PHYSICS | 2024年 / 17卷 / 02期
关键词
QCD MODEL;
D O I
10.21468/SciPostPhys.17.2.045
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a model of hadronization based on invertible neural networks that faithfully reproduces a simplified version of the Lund string model for meson hadronization. Additionally, we introduce a new training method for normalizing flows, termed MAGIC, that improves the agreement between simulated and experimental distributions of high-level (macroscopic) observables by adjusting single-emission (microscopic) dynamics. Our results constitute an important step toward realizing a machine-learning based model of hadronization that utilizes experimental data during training. Finally, we demonstrate how a Bayesian extension to this normalizing-flow architecture can be used to provide analysis of statistical and modeling uncertainties on the generated observable distributions.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Towards Data-driven LQR with Koopmanizing Flows
    Bevanda, Petar
    Beier, Max
    Heshmati-Alamdari, Shahab
    Sosnowski, Stefan
    Hirche, Sandra
    IFAC PAPERSONLINE, 2022, 55 (15): : 13 - 18
  • [2] THE CONDITIONAL BARYCENTER PROBLEM, ITS DATA-DRIVEN FORMULATION AND ITS SOLUTION THROUGH NORMALIZING FLOWS
    Tabak, Esteban G.
    Trigila, Giulio
    Zhao, Wenjun
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (06) : 1635 - 1656
  • [3] DATA-DRIVEN GRADIENT FLOWS
    Pietschmann, Jan-Frederik
    Schlottbom, Matthias
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2022, 57 : 193 - 215
  • [4] A data-driven dE/dx simulation with normalizing flow
    Fang, Wenxing
    Li, Weidong
    Ji, Xiaobin
    Sun, Shengsen
    Chen, Tong
    Liu, Fang
    Li, Xiaoling
    Zhu, Kai
    Lin, Tao
    Qiu, Jinfa
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2024, 1065
  • [5] Towards a Process Model for Data-Driven Business Model Innovation
    Hunke, Fabian
    Seebacher, Stefan
    Schueritz, Ronny
    Illi, Alexander
    2017 IEEE 19TH CONFERENCE ON BUSINESS INFORMATICS (CBI), VOL 1, 2017, 1 : 150 - 157
  • [6] Towards Data-Driven Predictive Control Using Wavelets
    Sathyanarayanan, Kiran Kumar
    Pan, Guanru
    Faulwasser, Timm
    IFAC PAPERSONLINE, 2023, 56 (02): : 632 - 637
  • [7] Towards Data-Driven Autonomics in Data Centers
    Sirbu, Alina
    Babaoglu, Ozalp
    2015 INTERNATIONAL CONFERENCE ON CLOUD AND AUTONOMIC COMPUTING (ICCAC), 2015, : 45 - 56
  • [8] Towards vegetation species discrimination by using data-driven descriptors
    Nogueira, Keiller
    dos Santos, Jefersson A.
    Fornazari, Tamires
    Freire Silva, Thiago Sanna
    Morellato, Leonor Patricia
    Torres, Ricardo da S.
    2016 9TH IAPR WORKSHOP ON PATTERN RECOGNITION IN REMOTE SENSING (PRRS), 2016,
  • [9] Towards Data-driven Services in Vehicles
    Koch, Milan
    Wang, Hao
    Burgel, Robert
    Back, Thomas
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON VEHICLE TECHNOLOGY AND INTELLIGENT TRANSPORT SYSTEMS (VEHITS), 2020, : 45 - 52
  • [10] Towards Data-Driven Pediatrics in Zimbabwe
    Batani, John
    Maharaj, Manoj Sewak
    5TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, BIG DATA, COMPUTING AND DATA COMMUNICATION SYSTEMS (ICABCD2022), 2022,