Towards a data-driven model of hadronization using normalizing flows

被引:0
|
作者
Bierlich, Christian [1 ]
Ilten, Phil [2 ]
Menzo, Tony [2 ,3 ,4 ]
Mrenna, Stephen [2 ,5 ]
Szewc, Manuel [2 ]
Wilkinson, Michael K. [2 ]
Youssef, Ahmed [2 ]
Zupan, Jure [2 ,3 ,4 ]
机构
[1] Lund Univ, Dept Phys, Box 118, SE-22100 Lund, Sweden
[2] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA
[3] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA
[5] Fermilab Natl Accelerator Lab, Sci Comp Div, Batavia, IL 60510 USA
来源
SCIPOST PHYSICS | 2024年 / 17卷 / 02期
关键词
QCD MODEL;
D O I
10.21468/SciPostPhys.17.2.045
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a model of hadronization based on invertible neural networks that faithfully reproduces a simplified version of the Lund string model for meson hadronization. Additionally, we introduce a new training method for normalizing flows, termed MAGIC, that improves the agreement between simulated and experimental distributions of high-level (macroscopic) observables by adjusting single-emission (microscopic) dynamics. Our results constitute an important step toward realizing a machine-learning based model of hadronization that utilizes experimental data during training. Finally, we demonstrate how a Bayesian extension to this normalizing-flow architecture can be used to provide analysis of statistical and modeling uncertainties on the generated observable distributions.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Towards a Taxonomy of Data-driven Digital Services
    Rizk, Aya
    Bergvall-Kareborn, Birgitta
    Elragal, Ahmed
    PROCEEDINGS OF THE 51ST ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), 2018, : 1076 - 1085
  • [32] Towards data-driven football player assessment
    Stanojevic, Rade
    Gyarmati, Laszlo
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 167 - 172
  • [33] Towards Data-Driven Machine Translation for Lumasaaba
    Nabende, Peter
    DIGITAL SCIENCE, 2019, 850 : 3 - 11
  • [34] Towards data-driven stochastic predictive control
    Pan, Guanru
    Ou, Ruchuan
    Faulwasser, Timm
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023,
  • [35] Towards Data-Driven Approximate Circuit Design
    Qiu, Ling
    Zhang, Ziji
    Calhoun, Jon
    Lao, Yingjie
    2019 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2019), 2019, : 398 - 403
  • [36] Towards the Creation of a Data-Driven Programming Tutor
    Mostafavi, Behrooz
    Barnes, Tiffany
    INTELLIGENT TUTORING SYSTEMS, PART II, 2010, 6095 : 239 - 241
  • [37] Towards data-driven stochastic predictive control
    Institute of Energy Systems, Energy Efficiency and Energy Economics, TU Dortmund, Dortmund, Germany
    Int J Robust Nonlinear Control,
  • [38] Towards online data-driven prognostics system
    Elattar, Hatem M.
    Elminir, Hamdy K.
    Riad, A. M.
    COMPLEX & INTELLIGENT SYSTEMS, 2018, 4 (04) : 271 - 282
  • [39] Data-driven wall modeling for turbulent separated flows
    Dupuy, D.
    Odier, N.
    Lapeyre, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 487
  • [40] Distributional barycenter problem through data-driven flows
    Tabak, Esteban G.
    Trigila, Giulio
    Zhao, Wenjun
    PATTERN RECOGNITION, 2022, 130