Towards a data-driven model of hadronization using normalizing flows

被引:0
|
作者
Bierlich, Christian [1 ]
Ilten, Phil [2 ]
Menzo, Tony [2 ,3 ,4 ]
Mrenna, Stephen [2 ,5 ]
Szewc, Manuel [2 ]
Wilkinson, Michael K. [2 ]
Youssef, Ahmed [2 ]
Zupan, Jure [2 ,3 ,4 ]
机构
[1] Lund Univ, Dept Phys, Box 118, SE-22100 Lund, Sweden
[2] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA
[3] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA
[5] Fermilab Natl Accelerator Lab, Sci Comp Div, Batavia, IL 60510 USA
来源
SCIPOST PHYSICS | 2024年 / 17卷 / 02期
关键词
QCD MODEL;
D O I
10.21468/SciPostPhys.17.2.045
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a model of hadronization based on invertible neural networks that faithfully reproduces a simplified version of the Lund string model for meson hadronization. Additionally, we introduce a new training method for normalizing flows, termed MAGIC, that improves the agreement between simulated and experimental distributions of high-level (macroscopic) observables by adjusting single-emission (microscopic) dynamics. Our results constitute an important step toward realizing a machine-learning based model of hadronization that utilizes experimental data during training. Finally, we demonstrate how a Bayesian extension to this normalizing-flow architecture can be used to provide analysis of statistical and modeling uncertainties on the generated observable distributions.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] A data-driven hysteresis model
    Ikhouane, Faycal
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (09):
  • [22] A data-driven reflectance model
    Matusik, W
    Pfister, H
    Brand, M
    McMillan, L
    ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03): : 759 - 769
  • [23] Towards Generating Stylistic Dialogues for Narratives Using Data-Driven Approaches
    Xu, Weilai
    Hargood, Charlie
    Tang, Wen
    Charles, Fred
    INTERACTIVE STORYTELLING, ICIDS 2018, 2018, 11318 : 462 - 472
  • [24] Data-driven modeling of sluice gate flows using a convolutional neural network
    Yan, Xiaohui
    Wang, Yan
    Fan, Boyuan
    Mohammadian, Abdolmajid
    Liu, Jianwei
    Zhu, Zuhao
    JOURNAL OF HYDROINFORMATICS, 2023, 25 (05) : 1629 - 1647
  • [25] Data-driven surrogate modeling of multiphase flows using machine learning techniques
    Ganti, Himakar
    Khare, Prashant
    COMPUTERS & FLUIDS, 2020, 211
  • [26] Towards online data-driven prognostics system
    Hatem M. Elattar
    Hamdy K. Elminir
    A. M. Riad
    Complex & Intelligent Systems, 2018, 4 : 271 - 282
  • [27] Towards a Data-Driven Symbiosis of Agriculture and Photovoltaics
    Wang, Mingxin
    Zhang, Yiqiang
    Sun, Carter
    Li, Wei
    Zomaya, Albert Y.
    Sun, Yaojie
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 903 - 908
  • [28] Towards Data-Driven Vulnerability Prediction for Requirements
    Imtiaz, Sayem Mohammad
    Bhowmik, Tanmay
    ESEC/FSE'18: PROCEEDINGS OF THE 2018 26TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, 2018, : 744 - 748
  • [29] Towards Data-Driven Multilinear Metro Maps
    Nickel, Soeren
    Nollenburg, Martin
    DIAGRAMMATIC REPRESENTATION AND INFERENCE, DIAGRAMS 2020, 2020, 12169 : 153 - 161
  • [30] Data-driven change towards integrated care
    Bourgeois, Jolyce
    De Ridder, Lotje
    Van den Bogaert, Saskia
    Van der Brempt, Isabelle
    De Ridder, Ri
    INTERNATIONAL JOURNAL OF INTEGRATED CARE, 2018, 18